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ABSTRACT

This paper considers the graph signal sampling problem when some
of the selected samples are lost or unavailable due to sensor failures
or adversarial erasures. We formulate a robust graph signal sam-
pling problem where only a subset of selected samples are received,
and the goal is to maximize the worst-case performance. We pro-
pose a novel greedy robust sample selection algorithm and study its
performance guarantees. Our numerical results demonstrate the per-
formance improvement of the proposed algorithm over the existing
schemes.

Index Terms— Graph signal sampling, robust optimization, ap-
proximate submodular function maximization.

1. INTRODUCTION

Graphs are important tools for representing relationships, e.g., simi-
larities, between entities in large datasets. Graph signals are signals
defined over the vertices of a graph, which have been shown to be
useful in analyzing real-world systems, such as sensor networks, bi-
ological data, or machine learning systems, using tools from graph
signal processing [1-3].

Due to the size of most real-world graphs, it is often unfeasible
to observe all of the data points on the graph. In such scenarios, one
needs to select a small set of samples to observe, and make infer-
ences about the remaining nodes in the network by leveraging the
data obtained from the selected samples. Such setups are also re-
lated to the problem of active semi-supervised learning, where one
chooses a small set of data points to label, and learns the missing la-
bels by utilizing the labeled data along with the graph topology. The
question is then to choose the best data points to sample in order to
reconstruct the underlying data structure as accurately as possible.
This is known as the graph signal sampling problem [4].

The conditions under which one can perfectly reconstruct the
unknown graph signals from the sampled data points have been ex-
plored in various studies [4-8]. When the received samples are
noisy, however, perfect reconstruction is not possible, and one has to
look for the best approximate reconstruction in terms of the worst-
case or average-case performance. Greedy algorithms have been
proved to be effective in finding good sample sets under such scenar-
i0s [7,9,10], due to their approximate submodularity properties [11].
In particular, greedy set selection algorithms are known to provide a
constant factor guarantee for approximating the optimal solution of
a submodular function [12]. Approximate submodularity quantifies
how submodular a function is and also provides a constant factor ap-
proximation guarantee for greedy algorithms [13]. It has been shown
recently that the optimality criteria used in graph sampling [14] often
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exhibit properties similar to submodular functions, with approximate
submodularity in noisy environments [11].

Most graph signal sampling methodologies assume that all sam-
ples from the selected sampling set can actually be observed. In
environments where sensors can fail or samples can deleted by an
adversary, however, one may receive only an unknown subset of the
selected samples. This phenomenon can also be observed in social
sensing scenarios such as crowdsourcing [15], where one may query
a large group of users only to receive answers from a small subset of
them. Similarly, in the case of sample set selection on graphs some
samples may be lost. To address the issue, this paper deals with the
problem of finding a sampling strategy for maximizing the recon-
struction mean-squared error (MSE) of graph signals in the face of
worst case sample deletions.

Motivated by such scenarios, in this work, we formulate a robust
graph sampling problem, where one selects a set of k£ samples, but
only receives k — 7 of them, with the remaining 7 samples being
lost. Furthermore, it is not known beforehand which 7 samples will
be lost. The goal is to select the best sampling set of size k that has
the best worst-case performance over any subset of size k — 7 sam-
ples. We propose a robust greedy sample set selection algorithm
buffers against the possible loss of samples and study its perfor-
mance guarantees. As such, our work extends the greedy sample
set selection setup from [11] to sampling scenarios in which one re-
ceives only a subset of the selected samples. Our robust graph signal
sampling problem is also related to the existing robust optimization
frameworks [16—18], which mainly focus on the optimization of a
monotone function with a given approximate submodularity param-
eter. Our focus is on the functions used as an optimality criterion
for graph signal sampling, and through numerical evaluations, we
demonstrate how in this setup the proposed approach outperforms
state-of-the-art robust maximization techniques.

In the remainder of the paper, = stands for a scalar variable,
whereas x is a vector. X’ represents a set with cardinality |X|. A
is a matrix with A;; denoting its (¢, 7)" element. We use tr(A) to
denote the trace of A. diag(-) represents a diagonal matrix.

2. SYSTEM MODEL

We consider an undirected graph G = (V, £) with |[V| = N nodes.
A graph signal x is defined over the vertices of G, where x; repre-
sents the graph signal associated with node ¢ € V. We define an
adjacency matrix A associated with G, where A;; = 1 if and only
if (¢,7) € € and A;; = 0 otherwise. The graph Laplacian of G is
then given by L = D — A, where D is a diagonal matrix such that
D;; = Zj:“j)eg Ajij. Assuming that L has eigenvalues 0 = A1 <
... < An with corresponding eigenvectors V. = [v1,...,Vvy], we
can write L = VEVT, where & = diag(\1, ..., An). The graph
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Fourier transform of x is defined as x = V7x [1]. A graph signal
is called KC-bandlimited if % = [Xx 5<€\,C]T such that Xy = 0.
One can represent x as, x = VxXx where Vi = [v1...v|g|].

We consider a signal model along the lines of [11]. In particular,
we study the class of graph signals for which Xx has mean E[Xx] =
0 and covariance E[Xc%x] = A = diag(di, .. ., dx). Without loss
of generality, we assume A has full-rank, as one can always adjust
K to remove the elements for which d; = 0 otherwise. The sampling
process has access to a noisy version of the graph signal,

y=x+n &)
where the noise vector n has mean E[n] = 0 and covariance
Enn”] = Q = diag(p1, . .., un).

The sampling process chooses a set of samples, denoted by S C
V, from the signal in (1). This process is represented by a sampling
matrix S € {0, 1}‘5‘ *N in which the i*" row corresponds to the i*"
row of the N x N identity matrix I. The samples are given by:

ys =Sy. @

For the noiseless case n, one can obtain an exact reconstruction of x
from the samples y s under the conditions identified in [5,6]. For the
noisy setup, however, one has to approximate x from the noisy sam-
ples y s, as perfect reconstruction is no longer feasible. Accordingly,
we represent the reconstructed signal by X = Wys where W is an
N x| S| reconstruction matrix. The corresponding error covariance
matrix is given by:
K =E[(x —x)(x —%)"]. 3)
The optimal reconstruction matrix W is chosen as to minimize
the scalar cost function J(W) = z” Kz over the error covariance
matrix for all z € RY, as detailed in [11], leading to the following
error covariance matrix:

K=ViA ' +VisTsQ 's"sSv) ' Vi, @)

As can be observed from (4), the chosen sampling set S affects
the error covariance matrix through the following term:

K(S)=(A'+VEs'sQ 'sTsvi) ! 5)
= (AT D ptrel) T (6)
€S

where r7 is the i'" row of V. Then, the sampling set selection
problem is to choose the best sampling set S* of a given size k with
respect to an objective function defined over the matrix from (6),

* -1 -1 T\—1

ST = args%;alu):(kf((A + iezs,ui rir;) ). 7
It is useful to note that the formulation from (7) depends on the
choice of function f(.) In this work, we let f(.) be a monotonically
non-decreasing, non-negative function with f (@) = 0.

Finding S* is in general an NP-hard problem [19]. When the
objective function (7) is submodular, greedy algorithms can approx-
imate it in polynomial time. However, most functions used as opti-
mality criteria in graph signal sampling are not submodular. In such
cases, performance of greedy algorithms has been studied using the
notion of approximate submodularity, which measures how close a
function is to being submodular [11].

3. PROBLEM FORMULATION

The problem from (7) identifies the best sampling set assuming one
receives all the samples from the selected set S*. If there are sensor
failures or in adversarial environments, not all selected sensors will

Algorithm 1 Robust Graph Sampling

1: Initialize graph G = (V, £) and sampling set S = 0.
2: Stage 1:

3fori=1,...,7

4 Choose node u* such that:

f+a a 9
u rg urélvi(sf({u}) ©)
> S is the set of already selected nodes at the beginning of iteration i.
5 S=8SuU{u*}
6: Setj:=0
7: Stage 2:
8: fori=7+1,...,k
9: Choose node u* such that:
u* + arg max min f(AU{u 10
g max min f(AU {u}) (10)

> S7 denotes the set of j-element subsets of S.
10: S=8Su{u*}
1: j=j+1

provide samples. Accordingly, we define the robust graph sampling
problem as the selection of a set of k samples under the condition
that one receives only & — 7 of them, where we do not have have
prior knowledge of which samples will be lost. Formally, we wish to
select a set of samples S to maximize the worst-case performance:

X . -1 -1 T\—1

8 =arg max  min (A7 43 plvrD)™). ®)

|Al=k—T1 ieA

To solve (8) we propose a greedy algorithm consisting of two
stages (see Algorithm 1). In the first stage, the algorithm selects 7
nodes in an oblivious manner, similar to the first stage of existing
two-stage algorithms [17, 18]; at each step, the best node is selected
from the set of available nodes, by assuming all the previous ones
may be lost. In the second stage, we know that at least j nodes will
be received from the first stage. The algorithm then selects the next
node to maximize the worst case performance when combined with
any j nodes from the samples selected so far. This is unlike the
selection criterion used in [18], which discards the nodes selected in
the first stage. For 7 = 0, Algorithm 1 reduces to the conventional
greedy algorithm [11].

In order to study the performance of Algorithm 1, we utilize the
following definitions. The first one is related to the approximate su-
permodularity notion from [11]. In the sequel, we use the shorthand
notation f(A) = f((A™ 4+ 3, p; 'rary ) 7).

Definition 1. (Approximate submodularity) A function f is «-
approximately submodular if,

FAAU{}) = f(A) 2 o(f(BULi}) - f(B)) (D)

forall AC B CVandi€ V\B. where a € [0,1] is chosen as the
largest scalar satisfying (11).

We note that a = 0 always holds since f is monotonically non-
decreasing, and f becomes submodular when o = 1.

Definition 2. (Bipartite subadditivity ratio) [18] The bipartite sub-
additivity ratio of f is the largest 6 € [0, 1] such that

f(A) + f(B)
f(AUB)

Next, we provide a lower bound on the performance of the robust
greedy sample set selection algorithm.

>0, VYA BCVsuchthat ANB=0. (12)
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Theorem 1. Let S be the sampling set selected by Algorithm 1, with
So and 81 representing the samples selected in the first and second
stages, respectively. Denote the worst-case performance of S by,

i, 1 )

and let $(S™) denote the optimal solution of (8). Then,

6(8) > (1—¢ ) (9 #(S7) — Tg) (14)

where & is the approximate submodularity ratio from (11) of the
function,
9so(S1) = s f(A). (15)
[Al=|S1]

where S1 C V\So, and 8 = max;ey f({i}).

Proof. Consider the optimal sampling set S* from (8), and let W C
S* be its worst-case subset of size k — 7, i.e., f(W) < F(W') for
all W' C 8* with |W'| = k — 7. Then,

6(8%) = FW) < FIWUS UR) (16)

where R C V\(W U &) is an arbitrary set that satisfies the con-
dition W U So U R| = k, and (16) follows from the fact that f is
monotonically non-decreasing. Let M C WUSoUR be a set of size
|M| =k — 7 such that f(M) < f(M') forall M’ CWUSUR
with |M'| = k — 7. Then, we have from (16),

FWUSIUR) :f(MU(WUSOUR)\M) 17
< SUM) +F(WUSUR\M)  (18)
1
< 29508 + SV USURNM)) (19)
where (18) follows from (12), and gs, (S7) in (19) is defined as,
9s0(S1) = s Al o f (A), (20)
[S1]=k—7  |Al=]S1]
hence,
95, (S1) > . fnin qu(A)’ VT CWSost. [T|=k—7 (21)
[Al=k—7
> f(M) (22)
from which (19) follows. By denoting (W U Sp U R)\M £
{e1,...,er}, we find from (19) that
1 *
7950 (1) + f(WU So UR)\M))
1
5(950(81) + f({e1,-.-,er}) (23)
1
5 gsO 81 +Z {ei}U{6¢+1,. . 76-,—})-f({6i+1,. .. ,67—}))
24)
1
< 5 (950 (ST) + Z f({ei}) (25)
1 *
<z (gso (S) + Tg) 26)

where (24) is from telescopic sum, (25) is from (11) and f () = 0.
Next, note that Sy is the set of nodes selected in the first stage

of Algorithm 1. In the second stage, the algorithm aims to solve the
following set selection problem:

5 = i . 27
950(ST1) sy dnax AR f(A) (7
IS1l=k—7  |AI=IS1]

in a greedy manner. That is, (10) constructs a set S; of size k — 7
iteratively, at each iteration by selecting the node wu that essentially
maximizes the function,

u" = argmax gs, (U; U {u}) (28)
= argmax Acéglbrzb Dt f(A) (29)
[Al=tt]+1

fAU{u}) (30)

= arg max min
u  A:ACS uu,;
[Al=[tt; |

where U; denotes the already selected nodes at iteration ¢, accord-
ingly, S1 = Uk—-. Function gs,(-) in (28) is monotonically non-
decreasing, which can be proved by contradiction. Then, by letting &
denote the approximate submodularity ratio of gs, (+), one can show
through similar steps from [11,20] for bounding the performance of
greedy algorithms that,

A(S) = gsy(S1) = (1 — €%)gs, (ST) 31
which, combined with (26), leads to (14). O

An important optimality criterion based on the error covariance
K(S) from (6) is minimizing the mean-squared error (MSE) of the
reconstructed signal. Also known as A-optimality, the MSE crite-
rion is quantified by tr(K(S)). This problem can be equivalently
represented in the following maximization form,

f(S8) = tr(A) — tr(K(S)) (32)
=tr(A) —tr(A™"+ ) g trr) 7Y (33)
i€S
which is a non-negative, monotonically non-decreasing set function,
with f(0) = 0. In the following, we study the approximate submod-
ularity characteristics of the MSE function.

For tractability of our further analysis, we let A =
Q = ¢21, from which (33) can be written as

f(S) =2 (|IC| —tr((I—&—’erir?)l)) (34)
i€S

021 and

where v = 02 /02 is the SNR of the graph signals.

The submodularity ratio « for function f in (34) can be bounded
following the same steps in [11][Theorem 3]. The submodularity
ratio &, however, is based on function (15) instead, which may be
different f in general. As such, the next result provides a lower
bound on the approximate submodularity ratio &.

Proposition 1. The approximate submodularity ratio & in (15),
where f is the MSE criterion from (34), can be bounded below by,

1
as> +(1+7)

-2
S, ) (35)

where p = min;ey ||r; ||

Proof. The proof follows the lines of [11] but over the worst-case
solutions in (15), and is omitted due to space considerations. O

We observe that & increases as SNR decreases, hence the func-
tion becomes more submodular. As a result, the greedy algorithm
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Fig. 1. Performance comparisons for Barabasi-Albert graph with (a)
N =100, (b) N = 200.

provides a good approximation of the optimal solution in low SNR
environments. In contrast, for the noiseless case almost every subset
of |K| samples provides perfect reconstruction, hence in high SNR
scenarios the specific choice of sampling set is less relevant [11].

4. PERFORMANCE EVALUATIONS

In our simulations, we let A = I and Q = 021 with 62 = 1072,
and |K| = 5. We compare three algorithms, Algorithm 1, the con-
ventional greedy set selection algorithm, and the robust greedy opti-
mization algorithm (termed as oblivious-greedy algorithm) from [18,
Algorithm 1]. The oblivious-greedy algorithm is a 2 stage algo-
rithm as Algorithm 1. In stage 1, nodes are selected obliviously
as in Algorithm 1. In stage 2, however, the two algorithms dif-
fer. The oblivious-greedy algorithm discards the 7 nodes selected
in the first stage, and starting from an empty set, applies the con-
ventional greedy algorithm for selecting k& — 7 nodes in the second
stage. On the other hand, Algorithm 1 combines the information
from samples selected in the first stage and selects the next node
to maximize the performance of the worst case subset. The perfor-
mance of a selected set S is measured by the worst-case performance
min 4:4cs (tI‘(A) - tr(K(A))) 4 tI‘(A) — MSE.
=k—71

‘We first consider a Barabasi-Albert graph created from 4 seed
nodes, which has a scale-free degree structure like many real-world
topologies such as the WWW. The results, given in Fig. 1, show that
Algorithm 1 can provide performance gains of up to 20% improve-
ment over the greedy algorithm and up to 12% improvement over

T T T
4 —— Algorithm 1
—— Oblivious-greedy
—A— Greedy

Performance (tr(\)-MSE)
w
3

25

L L L L L L L L L
0 0.5 1 15 2 25 3 3.5 4 4.5 5

7 (number of samples lost)
(@)
5
4 —— Algorithm 1
—&6— Oblivious-greedy
4.5 —&— Greedy 1

Performance (tr(A)-MSE)

25

15

L L L L L L L L L
0 0.5 1 15 2 25 3 35 4 45 5

7 (number of samples lost)
(b)

Fig. 2. Performance comparisons for Erdos-Rényi graph with (a)
N =100, (b) N = 200.

the oblivious-greedy algorithm. Next, we consider an Erdos-Rényi
graph with each edge drawn with probability p = 0.2. The results
are illustrated in Fig. 2. We observe that in this setup Algorithm 1
can provide performance gains of up to 54% over the conventional
greedy algorithm, and up to 7% improvement over the oblivious-
greedy algorithm. In our performances tr(A) = 5. So, in Fig. 1 and
Fig. 2 at a performance level of 4.5 a drop in the performance by
1 for a different method indicates a difference in the SNR of 4.7dB
between those two methods whereas at the performance level of 3
a drop in the performance by 1 unit indicates a drop in the SNR by
1.76dB. As expected, the performance of all three algorithms is the
same when 7 = 0, since in this case both Algorithm 1 and oblivious-
greedy reduce to the greedy algorithm. The performance improve-
ment of Algorithm 1 over the oblivious-greedy becomes more sig-
nificant for the scale-free network topology.

5. CONCLUSION

We considered a graph sampling problem in which one receives only
a subset of the selected samples. For this problem, we proposed a
greedy robust sample selection algorithm and investigated its perfor-
mance guarantees. Numerical experiments show that the proposed
setup can significantly improve the performance over conventional
greedy sample selection algorithms, as well as state-of-the-art robust
set selection algorithms.
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