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ABSTRACT

This paper proposes a coded distributed graph processing framework
to alleviate the communication bottleneck in large-scale distributed
graph processing. In particular, we propose a topology-aware coded
computing (TACC) algorithm that has two salient features. First,
we propose a topology-aware graph allocation strategy. Second, we
propose a coded aggregation scheme that combines the intermedi-
ate computations for graph processes while constructing coded mes-
sages. The proposed setup builds on a trade-off between compu-
tation and communication, in that increasing the computation load
at the distributed parties can in turn reduce the communication load.
We demonstrate the effectiveness of the TACC algorithm by compar-
ing the communication load with existing setups on a Google web
graph for PageRank computations. In particular, we show that the
proposed coding strategy can lead up to 82% improvement in reduc-
ing the communication load when compared to the state-of-the-art.

Index Terms— Distributed computing, large-scale graph pro-
cessing, graph signal filtering

1. INTRODUCTION

Distributed graph processing provides a convenient way to scale-
up data-intensive graph applications, by distributing the storage and
computation load of a data processing application across multiple
processors [1–5]. Such applications include graph filtering, where
filter output at each node corresponds to a linear combination of sig-
nals from neighboring nodes scaled by filter coefficients [5–8], and
PageRank evaluations for web search [3]. These frameworks oper-
ate on a think like a vertex principle, where each vertex is assumed
to send and receive messages along the graph edges. A major chal-
lenge in distributed graph processing is inter-processor communica-
tion load, which can become a serious bottleneck by taking up to
50% of the overall execution time [9, 10].

Coding has proven to be an effective technique in tackling
the communication bottleneck in distributed systems. It has been
shown in [11] that coding can be utilized to achieve an inverse-
linear trade-off between the communication and computation load
in a MapReduce system [12]. The coded MapReduce framework
from [11] has been extended to computing general graph processes
in [13], providing a speedup of 47% over the baseline uncoded
scheme. For the Erdős-Rényi graph, it has been shown in [13] that
one can also achieve an inverse-linear trade-off between computa-
tion and communication. Recently, reference [14] has leveraged
aggregation techniques to combine the intermediate results in the
MapReduce framework of [11] to reduce the communication load.

This paper extends the topology-independent coded graph pro-
cessing setup from [13] to networks with irregular graph topolo-
gies. Unlike classical random graph models such as the Erdős-Rényi

graph, real-world graphs such as the WWW often have irregular
degree topologies [15]. An important question for minimizing the
inter-processor communication in such topologies is how to assign
high degree nodes across processors. On the one hand, one can store
a high degree node in multiple processors (each containing part of its
neighbors), and completely eliminate the cost of communication for
that node. Alternatively, one can place the node in a single processor
and utilize multicasting to communicate its value with all its neigh-
bors. By a careful placement of such nodes across the processors,
this can also enable opportunities for network coding, e.g., multi-
casting coded messages that will be useful to multiple processors
simultaneously.

To address the trade-offs involved in high-degree node as-
signment, we propose a topology-aware coded computing (TACC)
framework that distributes the nodes across the processors to create
multi-casting opportunities, but while doing so also ensures that high
degree nodes are simultaneously stored at many processors. First,
we propose a topology-aware graph allocation strategy to create re-
dundancy in the computations performed by each processor, where
different fractions of a processor’s memory are allocated to vertices
with different degree structures. Second, we propose a coded aggre-
gation strategy that combines the intermediate computations prior to
communication, and creates coded messages using the aggregated
computations. We show that the proposed TACC algorithm can
greatly reduce the communication load compared to the schemes
that are oblivious to the graph structures.

We demonstrate the effectiveness of TACC on a real-world
Google web graph [16]. By comparing the communication load of
TACC to the state-of-the-art distributed coding algorithm which is
oblivious to the graph topology [13], we show that TACC can lead
up to 82% improvement in reducing the communication load.

Our main contributions over the topology-independent coded
processing framework of [13] can be summarized as follows:
• We introduce a coding strategy for irregular graph topologies

based on the degree structures of graphs.
• We propose a judicious aggregation strategy that combines

the intermediate computations prior to coding.
• We show that TACC can reduce the communication load by

more than 80% on real-world graphs over the state-of-the-art.
This work is also related to distributed matrix computations and

distributed learning. For this setting, coding has been leveraged
mainly for the straggler problem [17–21]. Our focus is not on the
straggler problem, but instead in reducing the communication load
of the distributed system. Moreover, unlike the general matrix-vector
multiplication problem, graphs often exhibit special topological be-
havior. For instance, matrices corresponding to graphs (adjacency
matrices) are often sparse, and node degrees can vary significantly,
which we leverage in this paper.
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Notation. In the remainder of the paper, x is a scalar variable, x is
a vector, and X represents a set with cardinality |X |. A is a matrix
with Aij denoting its (i, j)th element.

2. PROBLEM FORMULATION

We consider a graph G = (V, E) with |V| = N nodes (vertices).
If G is an undirected graph, (i, j) = (j, i) represents an undirected
edge between nodes i and j, whereas ifG is directed, (i, j) indicates
a directed edge from node i to node j. Vector x = (x1, . . . , xN )
represents vertex-labels, such that xi ∈ R is the label of node i.
Similarly, an edge label eji ∈ R is associated with edge (i, j) ∈ E .
We define the (open) neighborhood of node i ∈ V by N (i) = {j :
(i, j) ∈ E}. We are interested in computing functions of the form

yj =
∑

i:j∈N (i)

ejixi (1)

for j = 1, . . . , N . By defining a matrix M such that

Mji =

{
eji if j ∈ N (i)
0 otherwise (2)

one can represent (1) as y = Mx with y = (y1, . . . , yN ). 1

Equation (1) can also be represented as a MapReduce compu-
tation [12], by decomposing it into map and reduce functions. The
map function represents the inner computation

gji(xi) , ejixi, (3)

where uji , gji(xi) is called an intermediate value. The reduce
function represents the summation

fj({uji : j ∈ N (i)}) =
∑

i:j∈N (i)

uji, (4)

to compute the output value yj in (1). A large number of graph-based
algorithms can be represented in the form of (1), including PageRank
computation, graph signal filtering, or semi-supervised learning.

We consider a distributed scenario in which (1) is computed
by K workers (processors), connected through a multicast network.
Worker k stores a subgraph ofGwith rN

K
nodes, given byMk ⊆ V ,

where V =
⋃K

k=1Mk
2. Worker k is also responsible for computing

the outputs for N
K

nodes, denoted byRk ⊆ V , whereRk ∩Rj = ∅
for k 6= j. Given a subgraph allocationM = (M1, . . . ,MK) and
an output allocationR = (R1, . . . ,RK), the distributed processing
setup consists of three stages, map phase, communication (shuffle)
phase, and reduce phase.

Map Phase. In this phase, workers utilize their allocated subgraphs
to compute the corresponding intermediate values. For every i ∈
Mk, worker k computes the intermediate values gi = ({uji : j ∈
N (i)}). The computation load of the system is defined as follows.

Definition 1 (Computation Load). Given a subgraph allocation
M = (M1, . . . ,MK), the computation load of the distributed
graph processing system is characterized as,

r ,

∑K
k=1 |Mk|
N

. (5)

Shuffle Phase. After computing the intermediate values, worker k
constructs a message Zk ∈ Rzk of length zk, given by a function

1In applications such as graph filtering, one may replaceN (i) in (1) with
the closed neighborhood {i} ∪ N (i).

2Storing a subgraph corresponds to storing the labels xi and eji for all
nodes i ∈Mk and j ∈ N (i).

Zk = φk({gi : i ∈ Mk}), which consists of the computations
required by other workers. In the shuffle phase, worker k multicasts
Zk to other parties in the system3. At the end of this phase, worker k
has all the information it needs to compute (1) for the nodes in Rk.
We formally define the communication load in this phase as follows.

Definition 2 (Communication Load). The communication load is
defined as the total number of messages communicated by K work-
ers during the shuffle phase,

LG(M,R, r) ,
K∑

k=1

zk (6)

for a given subgraph allocationM = (M1, . . . ,MK) and output
allocationR = (R1, . . . ,RK).

Reduce Phase. Worker k uses messages Z1, . . . , ZK communi-
cated during shuffle phase and local computations ({gi : i ∈Mk})
from the map phase to compute (1) for the nodes inRk, via a decod-
ing function yj = ψj

k(Z1, . . . , ZK , {gi : i ∈Mk}) for j ∈ Rk.
We wish to identify the trade-off between computation and com-

munication, as to how much reduction in communication is achieved
by increasing the computation load4. To do so, we characterize the
minimum communication load as a function of the computation load.

Definition 3. Given a computation load r, we define the communi-
cation - computation function as,

L∗(r) = inf
M,R

LG(M,R, r) (7)

L∗(r) identifies the trade-off between the computation load and the
communication load of the system.

Main Problem. Given a computation load r, our goal is to find the
optimal subgraph allocation M, output allocation R, and coding
scheme that minimizes the communication load L∗(r).

3. TOPOLOGY-AWARE CODED COMPUTING (TACC)

In this section, we introduce our topology-aware coded computing
(TACC) algorithm to perform computations of the form (1). An il-
lustrative example of the algorithm is provided first.

Consider the graph G = (V, E) depicted in Fig. 1 along with a
distributed computing setup with K = 3 workers. In the first step,
the set V is partitioned into K equal-sized parts and each part is
associated with a distinct worker. Each worker is responsible from
computing the output values in (1) corresponding to the nodes within
the part it is assigned to. In the second step, the nodes in each part
are sorted in descending order with respect to their degree, and di-
vided into Q equal-sized chunks. In this example, we have Q = 2,
therefore each part is divided into 2 groups with 2 nodes in each
group. In the third step, we define a parameter rq associated with
part q = 1, 2. This parameter indicates that each node in group q is
to be stored at rq workers. For the example at hand, r1 = 2, hence
each node in the first group is replicated at 2 workers. On the other
hand, for the second group we have r2 = 1, hence the nodes in the
second group is stored at a single worker. We call rq the computa-
tion load for group q = 1, 2. The node allocation is done according

3Existing practical systems that employ network-assisted multicast in-
clude IP multicast for streaming media [22]. We note that even if network
multicast is disabled, one can use an application layer multicast, such as by
using the MPI broadcast feature [23], that builds efficient multicast mecha-
nisms at the application layer [24].

4We assume the graph is fixed and needs to be processed multiple times.
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Fig. 1. Illustrative example for the proposed TACC algorithm.

to the following procedure. For each worker, the nodes associated
with part q are divided into

(
K−1
rq−1

)
equal-sized segments, and each

segment is replicated at a distinct subset of rq − 1 other workers. As
a result, each node in group q is stored at rq workers in total. By
selecting r1 > r2, one can ensure that each worker allocates a larger
fraction of its memory to higher degree nodes. Finally, workers ag-
gregate the intermediate computations that are targeted for the same
destination node, and form coded messages to be communicated to
the other workers. For instance, worker 1 multicasts the coded mes-
sage e1,4x4 + (e10,11x11 + e10,1x1) to workers 2 and 3. The value
e10,11x11 + e10,1x1 is needed by worker 3 to evaluate y10, whereas
e1,4x4 is needed by worker 2 to compute y1 from (1). To recover the
missing values, workers 2 and 3 evaluate e10,11x11 + e10,1x1 and
e1,4x4, respectively, and remove it from the coded message. Work-
ers communicate the missing values separately for the two groups.

The proposed topology-aware coded computing (TACC) algo-
rithm is given in Algorithm 1. Initially, we partition V into K equal-
sized non-overlapping parts R = (R1, . . . ,RK). Then, we utilize
the graph topology to design a subgraph allocation scheme M =
(M1, . . . ,MK) in which higher degree nodes are stored at a larger
fraction of workers. Our intuition is that higher degree nodes are
needed by a larger fraction of workers. As such, we carefully de-
sign a subgraph allocation scheme so that a larger portion of each
worker’s memory is dedicated to store higher degree nodes. To do
so, our scheme takes two system parameters. The first parameter, Q,
is defined to group vertices with similar degrees. Specifically, nodes
in each Rk, k = 1, . . . ,K, are sorted according to their degrees
and then divided into Q groups, such that each group has |Rk|

Q
=

N
QK

nodes. The first (last) group consists of the N
QK

highest (low-
est) degree nodes in Rk. We represent the sorted and grouped ver-
sion of Rk by R̃k = (R̃k1, . . . , R̃kQ), where |R̃kq| = d N

QK
e for

q = 1, . . . , Q. The second parameter, defined as r = (r1, . . . , rQ),
where rq ∈ {1, . . . ,K}, q = 1, . . . , Q, specifies that each node in
group q is stored at rq workers. We assume r1 ≥ . . . ≥ rQ to ensure
that high degree nodes are stored at a larger fraction of workers.

By controlling Q and r, one can make sure that the memory
constraints of the workers are satisfied. For instance, setting Q = 1
and choosing rQ = 1 indicates that there is no overlap between

Algorithm 1 Topology-Aware Coded Computing (TACC)
1: Initialize graph G = (V, E), number of workers K, parameters Q, and

r = (r1, . . . , rQ).
Subgraph and Output Allocation Phase:

2: Partition V into K equal-sized partsR = (R1, . . . ,RK).
3: for k = 1, . . . ,K
4: Let R̃k ← {Rk sorted using node degrees, in descending order}
5: Divide R̃k into Q equal sized groups, R̃k = (R̃k1, . . . , R̃kQ),

where R̃k1 holds the highest degree nodes from R̃k .
6: for q = 1, . . . , Q
7: Divide R̃kq into

(K−1
rq−1

)
equal-sized, non-overlapping

parts. Store each part at a distinct subset of rq workers
(including worker k).

8: Denote the subgraph allocated to worker k at the end of Step 3 by:

Mk =

Q⋃
q=1

Mq
k, (8)

whereMq
k is the subgraph stored at worker k for group q.

Map Phase:
9: for k = 1, . . . ,K

10: Worker k maps the nodes inMk from (8) using the map function
(3), and obtains the intermediate values,

{uji : i ∈Mk, j ∈ N (i)} (9)

Coded Aggregation and Shuffling Phase:
11: for q = 1, . . . , Q
12: for Each set of workers S ⊆ {1, . . . ,K} of size rq + 1
13: for k ∈ S
14: Workers in S\{k} compute,

uj =
∑

i∈
(⋂

k′∈S\{k}M
q

k′
)uji, j ∈ Rk, (10)

and form a vector of aggregated intermediate values

uk
S\{k} = ({uj : j ∈ Rk}). (11)

15: Split uk
S\{k} into rq equal-sized segments (chunks of equal

vector size), given by uk
S\{k},s for s ∈ S\{k}. Associate

each segment s with a distinct worker s ∈ S\{k}.
16: for j ∈ S
17: Worker j computes a coded message by forming a linear

combination of the segments associated with it

ZSj =
∑

k∈S\{j}
uk
S\{k},j (12)

by zero-padding if needed to ensure their sizes are equal, and
multicasts to the workers in S\{j}.

Reduce Phase:
18: for q = 1, . . . , Q
19: for Each set of workers S ⊆ {1, . . . ,K} of size rq + 1
20: for k ∈ S
21: After receiving ZSj from workers j ∈ S\{k}, worker k

removes the known segments to compute,

uk
S\{k},j=ZSj −

∑
k′∈S\{j,k}

uk′
S\{k′},j ∀j∈S\{k}. (13)

the nodes stored at different workers, whereas choosing rQ = K
indicates that every worker stores all of the nodes in V .

During the map phase, worker k maps the nodes in Mk from
(8) using the map function (3), to obtain the intermediate values.
The computation load of the system is

r =

∑K
k=1 |Mk|
N

=
1

Q

Q∑
j=1

rj . (14)

8184



We note that this phase follows the standard mapping stage of dis-
tributed algorithms, and unlike the previous stage, is not specific to
the proposed TACC algorithm.

In coded aggregation and shuffling phase, the redundancy cre-
ated during graph allocation is used to create coded multicasting op-
portunities. A key aspect of our strategy is to aggregate the interme-
diate values before forming coded messages to reduce the number of
messages communicated by each worker and the overall communi-
cation load. Aggregation is achieved by taking linear combinations
of the individual intermediate values targeted at a specific node.

In the reduce phase, each worker recovers the intermediate val-
ues needed to compute (1). For each group q ∈ {1, . . . , Q}, there
are
(

K
rq+1

)
subsets S of size rq + 1. Worker k is involved in

(
K−1
rq

)
of them, and within each subset, there are rq distinct segments
uk
S\{k},s known by other workers s ∈ S\{k} and needed by worker
k. Hence, worker k needs to recover

∑Q
q=1

(
K−1
rq

)
rq distinct seg-

ments in total. Consider a group q and set S ⊆ {1, . . . ,K} of size
rq +1. For workers j, k ∈ S and j 6= k, there are

(|S|−2
rq−2

)
= rq − 1

subsets of S that has size rq and contain both j and k. Among the
rq segments associated with worker j, rq − 1 of them are known
also by worker k, who needs the remaining segment. After receiving
ZSj from workers j ∈ S\{k}, worker k can remove the known
segments to compute (13). Hence, worker k recovers rq distinct
segments for the subset S. Since there are

(
K−1
rq

)
such subsets per

group q, worker k will recover all of the required
∑Q

q=1

(
K−1
rq

)
rq

segments. A theoretical analysis of the proposed TACC algorithm is
developed as part of a manuscript in preparation.

4. PERFORMANCE EVALUATION

We demonstrate the performance of our proposed TACC algorithm
on a real-world scale-free network. An important real-world exam-
ple of a scale-free network is a web graph, in which nodes represent
webpages and edges denote the hyperlinks between webpages. Web
graphs are utilized for various graph computations such as PageR-
ank. We consider a Google web graph from [16], with 875,713
nodes, 5,105,039 edges, and an average degree of 5.57.

For the initial partitioning of the graph, we utilize the METIS
graph partitioning tool [25, 26]. We consider a distributed system
with K = 5 workers, and simulate the following three scenarios.
The first one is coded computing without aggregation from [13]. The
second one is topology-independent coded aggregation, obtained by
setting Q = 1. The third scenario is topology-aware coded comput-
ing with aggregation from Algorithm 1, where we let Q = 5. We
then compare the communication load for the three setups, by keep-
ing the memory size of each worker the same, that is, each worker
can store the same number of nodes in all three scenarios. To do
so, we denote the computation load for the first two scenarios as
r ∈ {1, . . . ,K}, and select the computation load r = (r1, . . . , rQ)
for the third scenario so that (14) is satisfied. In particular, we select,

r = (r1, . . . , r5) =


(1, 1, 1, 1, 1) for r = 1
(5, 2, 1, 1, 1) for r = 2
(5, 3, 3, 3, 1) for r = 3
(5, 4, 4, 4, 3) for r = 4
(5, 5, 5, 5, 5) for r = 5

(15)

As a result, the average computation load is the same for all three
scenarios. We remark that r is a parameter to be determined by the
system designer, by taking into account the graph structure and the
memory size of each worker.

We provide the comparison of the communication load for the
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Fig. 2. Demonstrating the gain of the topology-aware coded comput-
ing (TACC) algorithm over (i) topology-independent coding with ag-
gregation and (ii) coding without aggregation, in reducing the com-
munication load for running PageRank on the Google web graph
dataset consisting of 875,713 nodes and 5,105,039 edges.

three schemes in Fig. 2. As observed from Fig. 2a, aggregation can
lead to an improvement of 57% over the coding strategy without ag-
gregation, whereas topology-aware coding with aggregation can lead
up to an 82% improvement. Hence, aggregation can be very use-
ful in reducing the communication cost for sparse graphs with non-
homogeneous degree structures. In Fig. 2b, we compare the commu-
nication load for topology-independent and topology-aware coding
schemes, both with aggregation, and find that topology-aware sub-
graph allocation can lead up to 57% improvement over the topology-
independent setup.

5. CONCLUSION
We have considered the communication bottleneck in distributed
graph processing. In order to reduce the communication load, we
have proposed a coded graph computing algorithm (TACC) that
leverages graph topology for subgraph allocation, in that nodes that
are needed by a larger number of workers are stored at a larger frac-
tion of workers. The proposed TACC algorithm carefully creates
overlaps between the subgraphs allocated to different workers and
aggregates the intermediate computations to enable coded multicas-
ting opportunities. We then demonstrate the benefits of aggregation
and topology-aware coding strategy over the existing schemes.
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