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ABSTRACT
This paper proposes a privacy-aware framework for distributed semi-
supervised learning. In particular, we consider a semi-supervised
learning problem where the training data is distributed among mul-
tiple data-owners, who wish to protect the privacy of their individ-
ual datasets from the other parties during training. We propose a
novel framework for protecting the privacy of individual datasets
while achieving good accuracy. Then, we characterize the privacy
of our framework, by defining a metric that quantifies the number of
candidate data points that are consistent with information shared by
data-owners. The number of candidates (and thus the privacy) de-
creases as more information is shared between data-owners, leading
to a privacy-utility (accuracy) trade-off. Our experiments show a sig-
nificant increase in classification accuracy compared to local train-
ing, i.e., using the individual datasets only, while the complexity of
our approach is significantly lower than that of other benchmarks,
such as secure multi-party computing or homomorphic encryption.

Index Terms— Semi-supervised learning, privacy and security,
distributed training

1. INTRODUCTION
Distributed learning provides an effective way to increase training
performance, by allowing multiple data-owners to collaborate and
learn from a large pool of data. On the other hand, the training data
often carries sensitive information, such as healthcare records, finan-
cial transactions, or image and audio recordings. The privacy of such
sensitive information should be protected from potential misuses, as
failing to do so may raise serious ethical and legal concerns.

This paper considers a scenario in which multiple data-owners
(clients) wish to collaborate to perform a semi-supervised task. Each
party owns a local dataset, in which only a small number of data
points are labeled and the remaining points are unlabeled. The goal
for each party is to learn the unknown labels by using the information
from the known labels and the unlabeled data points (feature vectors)
and to do this using both data they own and data owned by others.

We focus on a graph-based semi-supervised learning (SSL)
setup, in which training is carried out through label propagation on a
similarity graph, where the edge weight between nodes representing
two data points is a function of pairwise distances between those
points [1–3]. Our goal is to allow training using data from multiple
owners to be used, while minimizing the impact this has on privacy.

A straightforward approach to address this problem would be to
perform the learning task at each client independently, using only
the local datasets. This would achieve perfect privacy, as no infor-
mation is shared between the clients, but may lead to lower clas-
sification accuracy if labeled data is scarce, as is often the case in
SSL. Another possible approach would be to use secure multi-party
computation (MPC) (e.g., [4–6]), where individual datasets would
be secretly shared among data-owners, and then graph construction
and label propagation algorithms would be performed on the se-
cret shares. This approach has been investigated for the supervised
learning setup [7–9], in which multiple data-owners jointly train a

linear or logistic regression model, while keeping their individual
datasets private from the other parties. At the end, all parties learn
the final model while ensuring that their individual datasets are kept
information-theoretically private. The MPC protocol, however, re-
quires extensive communication and computation between the par-
ties and the development of more efficient secure protocols remains
an active area of research. A third alternative would be homomorphic
encryption (HE) [10], which allows computations to be performed in
the encrypted domain. This approach has also been studied for the
supervised learning setup [11, 12]. Computing in the encrypted do-
main, however, requires extensive computational resources. In sum-
mary, existing frameworks can provide strong information-theoretic
or computational privacy guarantees, while achieving good classifi-
cation accuracy by training jointly across several datasets, but they
require significant computation or communication overhead, which
hinders their applicability in large-scale systems. Another line of
work [13] considers a distributed SSL setup in which the pairwise
distances are computed in a privacy-preserving manner, i.e., without
revealing the individual data points. However, as we show in our pa-
per, the distances themselves can reveal extensive information about
the data points through a simple interpolation strategy and breach
privacy. Hence, the information revealed from the distances should
be limited to protect the privacy of the datasets.

In this paper, we propose PSSL, a lightweight privacy-preserving
framework for distributed SSL. PSSL allows information to be
shared openly between clients, but the amount and choice of shared
information are limited in order to preserve privacy. Since this
information is shared openly there is no encryption or secure com-
munication overhead, which significantly reduces complexity with
respect to existing methods. Following the graph SSL perspective,
each client builds a local graph with its own data, and then reveals
the similarity between a few of its data points and those of others
(essentially creating a few connections across private datasets).

The key intuition in our work is that revealing the similarity be-
tween points (a function of distance in a high dimensional space) is
not that informative if the number of connections created is small.
Revealing the similarities between more and more data points in-
creases the information leakage, but also improves the training per-
formance. Our framework is based on a trade-off between i) the
information that is leaked by the connections of each data point and
ii) the classification accuracy. We create a few informative inter-
client connections within a privacy-preserving protocol to improve
the classification accuracy significantly while protecting the privacy
of the individual data points. We then analyze the privacy-utility
trade-off of our system, by introducing a novel measure to quantify
how much information is leaked from the connections for each data
point, in terms of the number of neighbors as well as the similar-
ity between connected data points. In particular, we characterize the
privacy of our framework by defining a metric that quantifies the
number of candidate data points that are consistent with information
shared by data-owners. The number of candidates (and thus the pri-
vacy) decreases as more information is shared between data-owners,
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Fig. 1. Illustration of the distributed SSL setup with N data-owners
(clients). Client i ∈ [N ] owns a dataset Xi (in this example, a
collection of images), in which a small number of data points are la-
beled and the remaining ones are unlabeled. The clients collaborate
to run an SSL task to estimate their unknown labels.

leading to a privacy-utility (accuracy) trade-off. We also compare
the computational complexity of PSSL with cryptographic bench-
marks, such as secure MPC and HE, and show that PSSL can reduce
the complexity substantially.

Through numerical experiments, we show that PSSL can im-
prove classification accuracy significantly compared to local SSL
(i.e., using the individual dataset only). Moreover, we visually
demonstrate that information leakage from each user is minimal.

Note that one could also approach this problem using differen-
tial privacy, which adds noise to protect the privacy of personally
identifiable information, without changing the training results signif-
icantly [14–19]. Although our focus is on understanding how much
privacy can be provided specifically by controlling the structure of
the similarity graph, it may be possible in principle to combine our
techniques with differential privacy approaches.
Notation. In the remainder of the paper, x is a scalar variable, x is
a vector, and X is a set with cardinality |X |. A is a matrix with ai
denoting its ith row. [N ] denotes the set {1, . . . , N}.

2. THE PROPOSED PRIVACY-AWARE SEMI-SUPERVISED
LEARNING FRAMEWORK

We consider a distributed SSL scenario withN data-owners (clients)
as depicted in Figure 1. Client i ∈ [N ] owns an individual dataset
consisting ofM data points with F features, represented by anM ×
F matrix Xi = [x>i1 . . .x

>
iM ]>. Each data point belongs to one of

L classes, but only a small subset of the data points are labeled. The
labels are represented by an M × L matrix Yi = [y>i1 . . .y

>
iM ]>,

where yij = el if data point xij is labeled with class l ∈ [L], and
yij = 0 if it is not labeled. Vector el is the standard unit vector
whose lth element is 1 and the remaining elements are 0.

The clients wish to learn the missing labels in their individual
datasets. In order to improve their accuracy, clients can collabo-
rate and use each other’s labeled and unlabeled data while protect-
ing the privacy of their individual dataset 1. We also assume that
clients do not collude, i.e., they do not share information beyond
what the protocol requires them to. Our distributed SSL framework
consists of two main phases: 1) private graph construction, where
clients construct a similarity graph based on distances between data
points, while preserving the privacy of their individual data, and 2)
label propagation, where clients jointly process information in the
distributed similarity graph to learn the missing labels in their indi-
vidual datasets. These two phases are now described in detail.

1Our focus is on protecting the privacy of the actual data points (e.g.,
images), and not the labels (e.g., whether an image represents a dog or a cat).
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Fig. 2. Construction of the inter-client connections between clients i
and j. Each client initially partitions its own dataset into L clusters.
Then, within a secure MPC, for each cluster from client i, the closest
cluster from client j is identified, using the cluster centers (clients
do not learn the location of the cluster centers). Then, R random
connections are created between each cluster pair.

Private Graph Construction. In this phase, clients construct a sim-
ilarity graph in which similar data points are connected by an edge.
We define the distance between two data points as,

dij(u, v) := ‖xiu − xjv‖ for i, j ∈ [N ], u, v ∈ [M ], (1)

where data points xiu and xjv belong to clients i and j, respectively.

The weight of an edge, defined as wij(u, v) := e−dij(u,v)2
/
ε for a

given ε > 0, quantifies the similarity between two data points. Two
types of edges are created, the first correspond to “local” connec-
tions, i.e., between two nodes corresponding to data points avail-
able to a given client, whereas the second are inter-client connec-
tions linking data points stored by two different clients. The con-
nections that affect privacy are the inter-client ones. Thus, a good
graph should have only a few informative inter-client connections,
such that those nodes that are connected should not be too similar to
one another. This way one can achieve improved classification per-
formance while preserving privacy. While this principle is general,
we next describe a specific approach for graph construction.

(Local connections) Initially, client i ∈ [N ] locally constructs a mu-
tual K-nearest neighbor (K-NN) graph using its individual dataset
Xi. In this graph, each data point {xiu}u∈[M ] corresponds to a dis-
tinct node. An edge is drawn between two distinct nodes u and v if
and only if node u is among the K closest data points to node v and
vice versa, with respect to the distance measure dii(u, v) from (1).

(Inter-client connections) Clients create connections between their
data points and the data points that belong to other clients. As illus-
trated by Figure 2, client i ∈ [N ] first locally partitions its data points
{xiu}u∈[M ] into L clusters through k-means clustering with J iter-
ations [20] (by setting k = L). The corresponding cluster centers
are denoted by {zi1, . . . , ziL}. Then, each pair of clients i, j ∈ [N ]
carry out the following computations within a secure two-party MPC
protocol, through pairwise computations in a decentralized manner
(Note that this is a much lighter usage of MPC compared to multi-
party MPC, as it does not require full cooperation betweenN clients,
and is not used during training.). First, for each cluster l ∈ [L] from
client i, the closest cluster from client j is found by computing a
distance between cluster centers,

t = arg min
t′∈[L]

‖zil − zjt′‖. (2)

Second, R random connections are created between the two clus-
ters (l and t) with the condition that, node u from client i can be
connected to node v from client j as long as,



Algorithm 1 Private Graph Construction

Input: {Xi}i∈[N ], L, and parameters K, R, dmin, dmax, λ
Output: Similarity graph G = (V, E)
Local connections:

1: for client i ∈ [N ] do
2: Construct a mutual K-NN graph locally using Xi.
3: Let Vi denote the corresponding set of nodes.

Inter-client connections:
4: for client i ∈ [N ] do
5: Partition {xiu}u∈[M ] into L clusters via k-means clustering.

6: for client i ∈ [N ] do
7: for client j ∈ [N ]\{i} do

Within a secure two-party MPC protocol:
8: for cluster l ∈ [L] do
9: Find the closest cluster t from client j using (2).

10: Create R random connections satisfying (3) and (4)
between clusters l and t.

11: for each node v of client j selected in Step 10 do
12: if equation (7) has a single solution do
13: Discard all connections from v toNji(v).
14: else
15: Set Vj ← Vj\{v} and Vi ← Vi\Nji(v).
16: Repeat Steps 11-15 with j and i interchanged.

i) dmin ≤ dij(u, v) ≤ dmax (3)

ii) max
(
|Nij(u)|, |Nji(v)|

)
≤ λ (4)

for a given set of parameters dmin, dmax, λ, where Nij(u) repre-
sents the set of neighbors from node u of client i to client j (simi-
larly,Nji(v) is the set of neighbors from node v of client j to client
i). Third, any client, i, checks whether the information to share with
another client, j, would allow j to identify exactly the position of
a data point owned by i and connected to points from j. This is
checked based on the pairwise distances using an approach that will
be described in Section 3. If the check fails, the inter-client connec-
tions corresponding to that node are discarded. Finally, the corre-
sponding weights wij(u, v) are revealed to clients i and j. Algo-
rithm 1 demonstrates the graph construction procedure.

The two conditions in (3) and (4) correspond to the trade-off
between utility and privacy provided by our system. As will be dis-
cussed in Section 3, condition (3) ensures that the revealed inter-
client neighbors are not too close or too far. A balance needs to
be achieved between ensuring that privacy is preserved (dmin large
enough) while creating connections that are useful (dmax should not
be too large). Condition (4) ensures that a node is not connected
to too many neighbors. This is due to the fact that locating any data
point can be viewed as an interpolation problem using the knowledge
of the location of its neighbors and the corresponding distances. As
will be shown in Section 3 inter-client connections allow a client to
determine the location of data from another client within a multi-
dimensional sphere, whose dimension decreases as the number of
neighbors increases and the distance to the neighbors decreases.

As the computations in this phase are carried out within a secure
MPC protocol, clients only learn the final weights wij(u, v), and
beyond that they learn no information about the actual data points
belonging to the other clients, as well as the cluster centers. In other
words, client i only learns that node u is connected to some node v
with weight wij(u, v) but no more information about the actual data
point xjv . Similarly, client j only learns that node v is connected to
some node uwith weightwij(u, v) but nothing more about xiu. The
privacy protection of this secure weight computation step follows

from the privacy guarantees of the secure MPC protocol, and can be
based on information-theoretic or computational assumptions, de-
pending on the specific implementation [4–6].

Distributed Label Propagation. Learning is carried out through
a distributed label propagation algorithm, built on the centralized
label-propagation protocol from [2]. This is an iterative process
where, at each iteration, clients update the current estimation of their
labels by utilizing the information received from their neighbors.

Initially, client i ∈ [N ] constructs an M ×M similarity matrix
Wii with the (u, v)th element being equal to wii(u, v) if node u is
locally connected to node v, and 0 otherwise. In addition, for each
j ∈ [N ]\{i}, client i constructs an M ×M matrix Wji with the
(u, v)th element being equal to wji(u, v) if node u from client j is
connected to node v of client i, and 0 otherwise. Note that these
weights were calculated in the graph construction phase. Finally,
client i defines anM×Lmatrix A

(t)
i to hold the label estimations at

iteration t, and initializes them as A(0)
i = Yi. Each row represents

a probability distribution on L classes, that is, row u ∈ [M ] specifies
the probability that node u belongs to each of the L classes.

At iteration t, client i computes WjiA
(t)
i and sends it to client

j, for each j ∈ [N ]. Accordingly, client i receives the computation
results WijA

(t)
j from clients j ∈ [N ]. Client i then locally updates

its label estimations as follows,

A
(t+1)
i = αD−1

i

∑
j∈[N ]

WijA
(t)
j + (1− α)Yi (5)

where parameter α ∈ (0, 1) quantifies the amount of information
carried from the neighbors versus the initial labels. Di is a diagonal
matrix formed by client i that holds the weighted degree of node u,

deg(u) =
∑
j∈[N ]

∑
v∈Nij(u)

wij(u, v) (6)

at diagonal u. At the end of T iterations, client i computes the labels
of its data points using A

(T )
i . Specifically, node u ∈ [M ] is assigned

to the label with the highest probability, using the estimated proba-
bilities in row u of A

(T )
i . The convergence of the algorithm fol-

lows from similar arguments in [2], by letting Y = [YT
1 . . .Y

T
N ]T

and S , D−1W such that, D = diag(D1, . . . ,DN ) and the
(i, j)th element of W is equal to Wij for i, j ∈ [N ]. As can
be observed from (5), we use the random walk Laplacian D−1W
as our regularizer, unlike [2] where the regularizer is the normal-
ized Laplacian D−1/2WD−1/2 . Our choice of using the random
walk Laplacian is due to the distributed nature of our algorithm, that
normalization using the random walk Laplacian can be performed
locally by each client as it only requires the knowledge of Di at
client i, since the normalization of node u at client i is given by
wij(u, v)/deg(u). On the other hand, the normalized Laplacian re-
quires Di as well as Dj for j ∈ [N ]\{i}, which belong to other
clients, since in this case the normalization of node u at client i is
given by wij(u, v)/

√
deg(u)deg(v). This may in turn reveal addi-

tional information about them.
Lastly, for additional privacy protection against potential leak-

age of information through intermediate computations during the
label propagation phase, one can incorporate conventional secure
computation techniques, such as secure multi-party MPC [4, 5] or
HE [10], to perform the computations in (5).

3. PRIVACY ANALYSIS

Our privacy analysis is based on an inference problem, where the
adversary tries to guess a specific data point given the neighboring
data points as well as their relative distances. In the following, to
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Fig. 3. Locating an unknown data point xju in R3, using the neigh-
boring points xiu and xiu′ with corresponding distances dij(u, v)
and dij(u′, v), respectively. The candidate locations for xju are the
points on the surface of a 2-dimensional sphere (the shaded circle),
which is the intersection of two 3-dimensional spheres, centered at
xiu and xiu′ with radii dij(u, v) and dij(u′, v), respectively.

refer to a specific element from the dataset Xi, we use the terms
data point and node interchangeably. Suppose that client i attempts
to guess the value of node xjv for some v ∈ [M ] belonging to client
j. Then, the problem of locating node xjv corresponds to solving a
system of quadratic equations:

‖xiu − xjv‖2 = dij(u, v)
2 for all u ∈ Nji(v). (7)

where |Nji(v)| ≤ λ. Refer to Figure 3 for an illustration. By defi-
nition, the system (7) has at least one feasible solution, which is the
actual point xjv . Our privacy measure is equal to the number of can-
didate data points for any xjv , which is the number of solutions to
(7) and is parameterized by the quantity dmin. That is, increasing
dmin increases the pairwise distance dij(u, v) and the number of
solutions to (7). As a result, the adversary has to make a guess from
a larger set of candidate solutions, which is the basis of our privacy-
preserving algorithm. We now present how the number of solutions
increases with respect to dmin, by characterizing the solution space
of (7) for two feature domains: Euclidean and integer domains. Ini-
tially, we consider the Euclidean domain, i.e., each data point resides
in the Euclidean space of dimension F .

Proposition 1. If Xi ∈ RM×F for i ∈ [N ], then, the solution to
(7) is either: i) A point on the surface of a multi-dimensional sphere
with dimension no less than F − λ, ii) A single point.

Proof. The proof follows from the observation that solving (7) is
equivalent to finding the intersection of λmulti-dimensional spheres
where the dimension of each sphere is F . Then, the proposition is a
direct result of the intersection of spheres problem [21].

Whether the solution is a single point can be checked by a simple
QR-decomposition procedure [21]. In Algorithm 1, this verification
is implemented within the MPC protocol between pairs of clients,
while forming the inter-client edges. Proposition 1 characterizes the
solution space if a client tries to guess the value of a data point from
another client, when the data points reside in a Euclidean space.

Next, we consider the problem of characterizing the number of
candidate solutions when the domain is discrete, as in real-world
scenarios such as imaging, where pixel values are integer. Thus, we
now consider the case when the data points are realized from a fi-
nite domain of non-negative integers. For this case, characterizing
the solution space, in particular, the number of solutions to (7), is an
open problem in general. In the following, we characterize the num-
ber of solutions for this setup by focusing on the special case λ = 1.
This corresponds to the scenario in which any node is linked to at
most one other node from another client. In other words, the only
information that client i has about some node xjv that belongs to
client j is that it resides on the surface of an F -dimensional sphere
with radius dij(u, v) centered at xiu (which is client i’s own data
point). In the sequel, we identify the relation between the number
of candidate points on this sphere with respect to the relative dis-
tance (radius) dij(u, v). Specially, we demonstrate how the number

of candidate points grow as the pairwise distances increase. In Sec-
tion 4, we demonstrate that this special case can achieve significant
classification accuracy. We first state a useful lemma.
Lemma 1. (Sum of Integer Squares [22]) Consider the equation,

z2
1 + . . .+ z2

n = d, (8)

for some z = (z1, . . . , zn) and n. Let rn(d) denote the number of
different solutions to (8). If the domain of (8) is the set of all integers,

rn(d) = pn(d) +O(dn/4). (9)
pn(d) is called the singular series pn(d) = πn/2

Γ(n/2)
dn/2−1ρ(n, d),

in which the first term πn/2

Γ(n/2)
is independent of d, and the last term

can be bounded by two constants c1 ≤ ρ(n, d) ≤ c2 where c1 and
c2 are independent of d. Hence, for large d,

rn(d) ∼ dn/2. (10)
Proof. This lemma follows from standard results in number theory,
and is available in [22].

Corollary 1. The number of solutions from (10) in Lemma 1 in-
cludes both positive and negative integer solutions. One can remove
the effect of potential sign differences as,

rn(d) ∼ dn/2/2n, (11)
to approximate the minimum number of solutions corresponding to
distinct ‖z‖2 = (z2

1 , . . . , z
2
n) sequences.

Next, consider the system in (7) with λ = 1 and Xi ∈ XM×F
for i ∈ [N ], where X = {0, 1, . . . , s} is a finite set of |X | = s+ 1
non-negative integers. For this case, (7) reduces to a single equation,
hence one can treat it as a sum of squares problem by setting n = F ,
d = dij(u, v)

2, and ‖z‖2 = ‖xiu − xjv‖2 in (8). Unlike Lemma 1,
however, the domain is now finite, and client i can use this informa-
tion along with the data point xiu to remove the infeasible solutions.
The following lemma characterizes the structure of feasible and un-
feasible solutions, which will be useful in our analysis.
Lemma 2. Consider two vectors a ∈ Xn and b ∈ Xn where X =
{0, 1, . . . , s}, and define

‖a− b‖2 = (a1 − b1)2 + . . .+ (an − bn)2 = d. (12)
Let z = (z1, . . . , zn) be any solution to (8). If,

z2
i ≤ ds/2e2 ∀i ∈ [N ], (13)

then, for any given a ∈ Xn, there exists some b ∈ Xn that satisfy
(12). In this case, we say that z is a feasible solution for any a ∈ Xn.
Otherwise, if

z2
i > ds/2e2 for some i, (14)

then, there exists a ∈ Xn for which no b ∈ Xn satisfy (12). In this
case, we say that z is unfeasible for some a ∈ Xn.
Proof. Suppose (13) holds. Then,

bi =

{
|zi|+ ai if ai < |zi|
ai − |zi| if ai ≥ |zi| (15)

is a feasible solution to (12), since bi ∈ X for all i ∈ [N ]. Next,
suppose that (14) holds for some i ∈ [N ]. Let ai = ds/2e and
observe that 0 ≤ (ai − bi)2 ≤ ds/2e2, since 0 ≤ bi ≤ |X |. Hence,
(14) cannot be satisfied for any bi ∈ X . Accordingly, z is not a
feasible solution to (12).

As a result, the actual number of feasible solutions may be much
smaller than (10) when the domain is finite. We handle this problem
by converting a given solution of (8) in a lower dimensional space
(with dimension n < F ) into a feasible solution in the higher di-
mensional space (with dimension F ). This enables us to provide a
lower bound on the number of solutions when the dimension of the
feature space is sufficiently large. We next state our main theorem.



Theorem 1. Let Xi ∈ XM×F for i ∈ [N ], where the set X =
{0, 1, . . . , s} is a finite integer set, and λ = 1. Then, for guessing
any data point, there are ∼ (dmin/2)

n solutions to (7), where

n =

⌊
F

/(
d2
max

ds/2e2 + 4

)⌋
. (16)

Remark 1. Theorem 1 shows that the number of candidate solu-
tions to the inference problem increases as the minimum distance
between the data points (dmin) or the dimension of the feature space
(F ) increase (for a fixed X and dmax). This constitutes the basis
of our privacy criteria, in particular, one can improve privacy protec-
tion by reducing the number of neighbors at each node, by increasing
the number of feature dimensions, or by increasing the pairwise dis-
tances, i.e., so that only increasingly distant neighbors are revealed.

Proof. Let z be any solution to (8) when d = dij(u, v)
2 and n < F .

Then, z satisfies one of the following two cases:
Case 1: z2

i ≤ ds/2e2 for all i ∈ [n]. In this case, one can convert z
to a solution in (7). First, note that (7) represents a sum of F terms,
where each term is an integer square. Next, select n random indices
from (7) and set each term equal to a distinct element z2

i for i ∈ [n].
Set the remaining F − n terms to 0. Observe from Lemma 2 that
this is a feasible solution, since for any xiu, there exists a data point
xiv within the domain X that satisfies all the equality conditions.

Case 2: z2
i > ds/2e2 for some i ∈ [n]. In this case, we can

convert z to a solution in (7) as follows. First, note that, z2
i ≤⌊

dij(u,v)2

ds/2e2

⌋
ds/2e2+cwhere c is a constant such that c < ds/2e2. It

then follows from Lagrange’s four square theorem [23] that c can be
written as a sum of at most 4 integer squares. Therefore, each z2

i can

be written as a sum of at most
⌊
dij(u,v)2

ds/2e2

⌋
+4 squares whose value is

no greater than ds/2e2. Since there are at most n such z2
i terms, any

solution z can be written as a sum of at most n
(⌊

dij(u,v)2

ds/2e2

⌋
+ 4
)

squares whose value is no greater than ds/2e2, after which we can
use Lemma 2. Therefore, whenever

F ≥ n
(⌊

dij(u, v)
2

ds/2e2

⌋
+ 4

)
, (17)

then any solution z of (8) can be converted to a solution of (7), by set-

ting n
(⌊

dij(u,v)2

ds/2e2

⌋
+ 4
)

random indices equal to the correspond-
ing terms and the remaining F − n terms equal to 0. Hence, for any
n satisfying (17), from Corollary 1, there are (dij(u, v)/2)

n dis-
tinct solutions to (7). Finally, note that dmin ≤ dij(u, v) ≤ dmax

from (3). Therefore, if F ≥ n
(
d2max
ds/2e2 + 4

)
, then, there are at least

∼ (dmin/2)
n candidate solutions for guessing any single data point.

Then, (16) follows from selecting the largest feasible n.

4. EXPERIMENTS

We now investigate the performance of the PSSL framework. To
do so, we consider a distributed SSL task for image classification
on the MNIST dataset [24], carried out by N = 10 clients. Each
training sample in the dataset is an 28 × 28 image, converted into a
vector of size F = 784. Pixel values are from X = {0, . . . , 255}.
From the dataset, we extract the images for digits 1, 2, 3, 4 (setting
L = 4), and assign M = 500 images to each client randomly, with
no duplicate assignments. Within each dataset, r = 0.01 fraction
of samples (randomly selected) are labeled. The parameters for the
edge weights are selected as ε := 1/γ where γ = 1.25, and for label
propagation we set α = 0.99, in accordance with [2]. The training is
done over T = 20 iterations. We then compare the PSSL framework

Table 1. Average classification accuracy

Protocol Accuracy (%) Bound of Theorem 1

CSSL 95.22
PSSL (dmin = 3s) 80.34 1.46× 105

PSSL (dmin = 5s) 79.96 4.06× 105

PSSL (dmin = 7s) 74.98 7.96× 105

LSSL 64.62

from Section 2 with the following two baselines.

1. Centralized SSL (CSSL): This is the conventional centralized
SSL scenario in which the collection of individual datasets is treated
as a single dataset, and a single mutual K-NN graph is constructed
to identify the similarities between data points. Then, the label prop-
agation algorithm from [2] is implemented on the resulting graph to
learn the unknown labels. This protocol defines our baseline for the
best performance in the graph-based learning scenario.

2. Local SSL (LSSL): In this scenario, each client performs the
learning task by using its local dataset only, without collaborating
with other clients. Specifically, each client first constructs a mutual
K-NN graph locally using its individual dataset and then carries out
the label propagation protocol from [2] using its local graph. In do-
ing so, clients do not communicate with each other, and therefore
no information is shared between them. Since all computations are
performed locally, this scenario achieves perfect privacy.

Table 1 presents the average classification accuracy (over N
clients) of our PSSL framework compared with the two benchmarks.
We also present the lower bound (dmin/2)

n from Theorem 1 with
n chosen according to (16), which measures the privacy protection
of the system (related to the number of candidates for guessing each
data point). In all three scenarios, we let K = 10 for the mutual K-
NN graph construction. For PSSL, we set the system parameters as
M = 1, dmax = 9s, andR = 80, and present the change in the clas-
sification accuracy as the minimum distance dmin allowed between
the neighboring nodes is increased. This represents the trade-off be-
tween the utility and privacy provided by our system. Specifically,
as discussed in Section 3, in this case, the information available at
client i about a data point xjv belonging to client j consists of the lo-
cation of at most a single neighboring data point xiu and the distance
dij(u, v) ≥ dmin between the two. As the minimum distance be-
tween the neighbors is increased, the number of potential candidates
for guessing each node increases, which then increases the privacy
protection of the system. On the other hand, the increased distances
between neighboring nodes reduce the classification accuracy, hence
the utility provided by the learning mechanism. In Figure 4, we il-
lustrate the images corresponding to the neighboring data points as
the minimum distance allowed between them is increased gradually.
In particular, we plot the first 100 images known by client 1 and the
corresponding neighbor from client 2. We visually observe that as
the minimum distance dmin increases, the neighboring images be-
come less and less similar to the actual image.

One can construct a global K-NN graph within a cryptographic
computation protocol such as multi-party MPC or HE. Such a proto-
col, however, would require O((NM)2) secure computations. This
limits their scalability to large systems, as secure computations re-
quire either extensive communication and coordination between the
parties (the communication overhead of the well-known multi-party
MPC from [5] is O(N2), i.e., quadratic in the number of clients),
or computation to be performed in the encrypted domain (in HE, the
size of the encrypted data is much larger than the original data, as its
privacy protection depends on the size of the encrypted data), which
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Fig. 4. Illustration of the first 100 images from client 1 and the corresponding neighbor from client 2, as the minimum distance dmin is
increased. A black square denotes that the image from client 1 has no neighbors at client 2. The highlighted images demonstrate that when
the distance is small, neighboring images look similar, whereas they start to look less similar as the distance becomes larger.

Table 2. Comparison of storage (per client), communication, and
computation overhead of: 1) Centralized SSL with (multi-party)
MPC, 2) Centralized SSL with HE, 3) Local SSL, and 4) PSSL.
In HE, storage, communication, and computation is done over en-
crypted data, whose size is much larger than the original data size.

Protocol Storage Communication Computation

CSSL-MPC O(MN) O((M2N4) O((MN)2)
CSSL-HE O(MN) O(MN2) O((MN)2)
LSSL O(M) 0 O(M2)
PSSL O(M) O(NLR) O(max{M2,MLJ,NLR})

can lead to many orders of magnitude slowdown. A comparison of
the overhead incurred by these approaches is given in Table 2.

5. CONCLUSION

We have considered a distributed learning scenario in which multi-
ple data-owners wish to jointly run a semi-supervised learning task
without revealing their individual datasets to each other. We propose
a lightweight privacy-aware learning framework and analyze its pri-
vacy protection. Numerical results demonstrate that our framework
can achieve good learning accuracy while being privacy-preserving.
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