
508 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 6, 2020

TACC: Topology-Aware Coded Computing
for Distributed Graph Processing

Başak Güler , Member, IEEE, A. Salman Avestimehr, Fellow, IEEE, and Antonio Ortega , Fellow, IEEE

Abstract—This article proposes a coded distributed graph pro-
cessing framework to alleviate the communication bottleneck in
large-scale distributed graph processing. In particular, we propose
a topology-aware coded computing (TACC) algorithm that has
two novel salient features: (i) a topology-aware graph allocation
strategy, and (ii) a coded aggregation scheme that combines the
intermediate computations for graph processing while constructing
coded messages. The proposed setup results in a trade-off between
computation and communication, in that increasing the computa-
tion load at the distributed parties can in turn reduce the com-
munication load. We demonstrate the effectiveness of the TACC
algorithm by comparing the communication load with existing
setups on both Erdös-Rényi and Barabási-Albert type random
graphs, as well as real-world Google web graph for PageRank
computations. In particular, we show that the proposed coding
strategy can lead to up to 82% reduction in communication load
and up to46% reduction in overall execution time, when compared
to the state-of-the-art and implemented on the Amazon EC2 cloud
compute platform.

Index Terms—Distributed computing, large-scale graph
processing, graph signal filtering.

I. INTRODUCTION

GRAPHS are a fundamental building block for modeling
large-scale data applications. Graph-based computations

model scenarios for which the computations at each vertex can be
expressed as a linear combination of the values associated with
neighboring vertices. A large-number of real-world applications
can be expressed in this form. Examples include PageRank
evaluation for web search [2], and graph signal filtering [3]–[6],
where the filter output at each node is a linear combination
of signals from neighboring nodes scaled by filter coefficients.
On the one hand, these applications require processing large
amounts of data represented over graphs in a short amount of

Manuscript received August 20, 2019; revised April 7, 2020; accepted May
11, 2020. Date of publication May 28, 2020; date of current version July 1,
2020. This work was presented in part at the 2019 International Conference
on Acoustics, Speech, and Signal Processing (ICASSP’19) [1]. This work was
supported in part by the NSF under grants CCF-1410009 and CCF-1527874, and
in part by the Defense Advanced Research Projects Agency (DARPA) under
Contract No. HR001117C0053, ARO award W911NF1810400, NSF grants
CCF-1703575, ONR Award No. N00014-16-1-2189, and CCF-1763673. The
views, opinions, and/or findings expressed are those of the author(s) and should
not be interpreted as representing the official views or policies of the Department
of Defense or the U.S. Government. The associate editor coordinating the review
of this manuscript and approving it for publication was Dr. Gonzalo Mateos.
(Corresponding author: Başak Güler.)

The authors are with the Department of Electrical and Computer Engineer-
ing, University of Southern California, Los Angeles, CA 90089 USA (e-mail:
bguler@usc.edu; avestimehr@usc.edu; antonio.ortega@sipi.usc.edu).

Digital Object Identifier 10.1109/TSIPN.2020.2998223

time. On the other hand, real-world graphs are often too large
to fit in a single processor. Even in scenarios for which the
graph can be stored at a single processor, the execution time
might be too long for delay-sensitive applications. These lim-
itations can be alleviated by leveraging distributed computing,
where each processor only stores and processes a portion of the
graph.

Distributed graph processing provides a convenient way to
scale-up data-intensive graph applications, such as scaling graph
signal processing algorithms to large graphs [3]–[6], by dis-
tributing the storage and computation load across multiple pro-
cessors [7], [8]. As the topology of a graph is irregular, graph
processing frameworks operate on a think like a vertex principle,
where each vertex is assumed to send and receive messages along
the graph edges [7]. Doing so can improve the performance
of graph processing beyond that of conventional frameworks
designed for processing regular data, such as MapReduce, which
are oblivious to the underlying graph topology [9]. A major
challenge in distributed graph processing is inter-processor com-
munication, i.e., the amount of communication that needs to
take place between the processors, as most graph algorithms
require vertices stored at different processors to communicate
with one another. As the computations are distributed across
a larger number of machines, inter-server communication in-
creases and becomes a major bottleneck. In fact, inter-processor
communication can take up to 50% of the overall execution time,
and may even overcome the benefits of parallelization [10], [11].

The conventional approach to address the inter-processor
communication bottleneck has been to leverage effective graph
partitioning schemes that minimize the total cut size, i.e., the
number of edges between the nodes stored at different proces-
sors [12]. Various notable methods are proposed to obtain a
sparse graph cut, such as spectral partitioning [13], geometric
partitioning [14], and multi-level graph partitioning [15]. A
detailed review of these methods is available in [16].

Recently, coding has proven to be an effective technique in
tackling the communication bottleneck in distributed systems. It
has been shown in [17] that coding can be utilized to achieve an
inverse-linear trade-off between the communication and storage
load in a MapReduce system [9]. This result demonstrates that
by increasing the storage load of the distributed parties, i.e.,
the amount of computation performed by each processor, one
can reduce by a linear factor the amount of communication that
needs to take place between the workers. The coded MapReduce
framework from [17] has been extended to graph-based compu-
tations in [18]. In fact, one can view the MapReduce framework

2373-776X © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on July 03,2020 at 22:20:34 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3246-1667
https://orcid.org/0000-0001-5403-0940
mailto:bguler@usc.edu
mailto:avestimehr@usc.edu
mailto:antonio.ortega@sipi.usc.edu

GÜLER et al.: TACC: TOPOLOGY-AWARE CODED COMPUTING FOR DISTRIBUTED GRAPH PROCESSING 509

Fig. 1. Communication strategies for an irregular graph topology and 3 processors (workers). Each worker has a memory that can store up to 7 nodes.

from [17] as a special case of [18], where communication takes
place between any pair of nodes. For Erdös-Rényi graphs, it has
been shown in [18] that one can also achieve an inverse-linear
trade-off between computation and communication. Recently,
reference [19] has leveraged aggregation techniques based on
linearly combining the intermediate results to reduce the com-
munication load in the MapReduce framework [17].

This paper extends the topology-independent coded graph
processing setup from [18] to networks with irregular graph
topologies. Unlike classical random graph models such as the
Erdös-Rényi graph, real-world graphs such as the web often
have irregular degree topologies [20]. An important question for
minimizing the inter-processor communication in such topolo-
gies is that of assigning nodes to processors. This assignment
problem is particularly significant for high degree nodes. One
can replicate a high degree node at a large number of processors
(each containing a subset of its neighbors), and completely elim-
inate the cost of communication for that node. Alternatively, one
can place that node at fewer processors and utilize multicasting
to communicate its value with all its neighbors. By a careful
placement of such nodes across the processors, this can also
enable network coding opportunities, e.g., multicasting coded
messages that will be useful to multiple processors simultane-
ously. This will cost less storage (than full replication) but at a
higher communication cost. The irregularity in graph topology
causes a trade-off between these two approaches, i.e., between
less communication with higher storage (due to replication)
and higher communication cost with lower storage (with mul-
ticasting). This requires the development of a topology-aware
processing strategy.

The trade-off arising from these two alternative approaches
is illustrated in Fig. 1. Consider Node 1 (high degree) and
the communication load between Worker 3 and the other two
workers. In Fig. 1(a), Node 1 is replicated at all 3 workers,
thus eliminating the cost of communication completely for this
node. Worker 3 then broadcasts the remaining node, Node 3,
to the remaining workers. In Fig. 1(b), Node 1 is stored at
only 2 workers, thus reducing the storage load for that node.
On the other hand, the communication cost is now increased,
as Node 1 needs to be sent to Worker 2. To achieve efficient
communication, Worker 3 utilizes multi-casting opportunities,
by sending a coded message, the sum of nodes 1 and 3. Worker

2 can then remove Node 3 from the coded message and learn
Node 1, whereas Worker 1 can remove Node 1 to learn 3.

To address this trade-off we propose a topology-aware coded
computing framework (TACC) that distributes the nodes across
multiple processors to create multi-casting opportunities, but
while doing so also ensures that high degree nodes are simulta-
neously stored at many processors. To do so, we first propose a
topology-aware graph allocation strategy to create redundancy in
the computations performed by each processor, where different
fractions of a processor’s memory are allocated to vertices with
different degree structures. Second, we develop a coded aggre-
gation technique that combines the intermediate computations
prior to communication, and creates coded messages using the
aggregated computations.

We show that TACC can greatly reduce the communication
load as compared to existing coded and uncoded computing
frameworks that are oblivious to the graph structures. We ana-
lyze theoretically the asymptotic performance of our algorithm
in terms of the expected communication load on generalized
random graphs, which extend the classical Erdös-Rényi random
graph model to graphs with irregular degree topologies [21]–
[23]. We develop upper and lower bounds on the expected com-
munication load for TACC as well as the topology-independent
coding setups, demonstrating the benefits of TACC compared to
the topology-independent setup.

Next, we demonstrate the effectiveness of TACC on real-
world graphs. Similar to random graph topologies, we show
that topology-aware coding can also significantly outperform the
topology-independent setup in real-world graphs. We first test
it on a Google web graph, a real-world dataset that represents
the connections between webpages [24]. For the Google web
graph, we compare the communication load of TACC to the
state-of-the-art distributed coding algorithm which is oblivious
to the graph topology [18], demonstrate that topology aware
coding with aggregation can lead up to 82% improvement in
reducing the communication load when compared to existing
distributed computing setups. Next, we implement the PageRank
algorithm on the Amazon AWS EC2 distributed cloud comput-
ing framework, and show that for an Erdös-Rényi random graph,
TACC can reduce the overall execution time by up to 46% over
the state-of-the-art.

Our main contributions over the topology-independent com-
puting framework of [18] can be summarized as follows:

Authorized licensed use limited to: University of Southern California. Downloaded on July 03,2020 at 22:20:34 UTC from IEEE Xplore. Restrictions apply.

510 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 6, 2020

� We introduce topology-aware coded computing
(TACC) for irregular graph topologies. TACC builds a
topology-aware graph allocation strategy, where
overlapping parts of a graph is allocated to multiple
workers in a way that enables multi-casting opportunities,
while ensuring higher degree nodes are replicated at a
larger fraction of workers.

� We propose coded aggregation for speeding up graph
processing, in which coding is performed over linear
combinations of the intermediate values, instead of coding
directly over the intermediate values as in [18]. We show
that coded aggregation can reduce the communication load
by up to 95% on an Erdös-Rényi graph.

� We theoretically establish upper and lower bounds on
the performance of TACC for random graph models with
irregular topologies.

� We demonstrate that TACC can reduce the communication
cost by more than 80% over the state-of-the-art, on both
random graphs and real-world scale-free graphs.

This paper extends our preliminary work [1] by providing an ex-
tensive theoretical analysis of the algorithm as well as additional
experimental evaluations.

Related Work: In addition to the graph processing specific
applications, such as [7], [12], [18], this work is also related
to distributed matrix multiplication and distributed learning.
For these setups, coding has been utilized primarily to handle
failed or straggling (delayed) workers [25]–[36], where some
workers fail or are significantly slower than the other workers,
causing a significant delay in the overall computation time. For
these problems, a coded computation strategy can allow the
master to wait only for the results of a subset of fast workers,
instead of all the workers in the system. Notable techniques
include encoding the input matrices to handle stragglers in
distributed matrix multiplication [25]–[28], as well as encoding
the dataset [29]–[31] or gradients [32] for iterative algorithms
in distributed learning. In a related line of work, a coded com-
putation technique has been developed for performing iterative
algorithms (such as PageRank) under a deadline constraint [33].
More recently, coded computing schemes have been developed
for sparse matrices using rateless codes [34], [35], to better
utilize the work done by slow workers. Reference [36] has
introduced novel coding schemes based on block-diagonal and
LT codes for handling stragglers while achieving significantly
lower computational delay. Finally, coded computing is heavily
inspired by earlier research on coded caching for content deliv-
ery [37]–[40], where the goal is to store parts of the data at the
local memory of users to handle network congestion during busy
hours.

The focus of this paper is not on the straggler or node failure
problem, but instead in reducing the communication load of the
distributed system. Moreover, unlike the general matrix-vector
multiplication problem, graphs often exhibit special topological
behavior, for instance, matrices corresponding to graphs (adja-
cency matrices) are often sparse while node degrees can vary
significantly.

Notation: In the remainder of the paper, x is a scalar variable,
x = [x1, . . . , xn]

T is a vector of size N , and X represents a set

with cardinality |X |. A is a matrix withAij denoting its (i, j)th

element. Finally, [K] represents the set {1, . . . ,K}.

II. PROBLEM FORMULATION

We consider a graph G = (V, E) with |V| = N nodes (ver-
tices). If G is an undirected graph, (i, j) = (j, i) represents
an undirected edge between nodes i and j, whereas if G is
directed, (i, j) indicates a directed edge from node i to node
j. Vector x = (x1, . . . , xN) represents vertex-labels, such that
xi ∈ R is the label of node i. x can also be interpreted as a
graph signal [4]. An edge weight eji ∈ R is associated with edge
(i, j) ∈ E . We define the (open) neighborhood of node i ∈ V
by N (i) = {j : (i, j) ∈ E}. We are interested in computing
functions of the form

yj =
∑

i:j∈N (i)

ejixi (1)

for j ∈ [N]. The output value yj is a linear combination of the
signals associated with the neighbors of node j. By defining the
(weighted) adjacency matrix A such that,

Aji =

{
eji if j ∈ N (i)
0 otherwise

, (2)

one can represent (1) as,

y = Ax, (3)

where y = (y1, . . . , yN). In applications such as graph filter-
ing, we replace N (i) in (1) with the closed neighborhood
{i} ∪ N (i). Equation (1) can also be represented as a MapRe-
duce computation [9], by decomposing it into map and reduce
functions. The map function represents the inner computation

gji(xi) � ejixi, (4)

where uji � gji(xi) is called an intermediate value. The reduce
function represents the summation

fj({uji : j ∈ N (i)}) =
∑

i:j∈N (i)

uji, (5)

to compute the output yj in (1). A large number of graph-
based algorithms can be represented in the form of (1), in-
cluding PageRank computation, graph signal filtering, or semi-
supervised learning. We next present two specific examples.

Example 1 (Distributed PageRank Computation): PageRank
is a widely used graph algorithm for ranking webpages in
web search engines [2]. Specifically, this algorithm operates
on a directed graph in which nodes represent webpages, and
an edge represents a hyperlink from one webpage to another.
The PageRank algorithm can be viewed as a process in which
computations in the form of (1) are performed iteratively. To do
so, one can define the matrix A such that,

Aji =

{ 1
|N (i)| if (i, j) ∈ E
0 otherwise

(6)

and compute

x(t) = Ax(t−1) (7)

Authorized licensed use limited to: University of Southern California. Downloaded on July 03,2020 at 22:20:34 UTC from IEEE Xplore. Restrictions apply.

GÜLER et al.: TACC: TOPOLOGY-AWARE CODED COMPUTING FOR DISTRIBUTED GRAPH PROCESSING 511

iteratively until a convergence criterion is satisfied, which is
often stated as

∑

i∈V
|x(t)i − x

(t−1)
i | ≤ ε (8)

for some small ε > 0, where x(t) = (x
(t)
1 , . . . , x

(t)
N) denotes the

PageRank values at iteration t. The initial PageRank values are
often set as x(0) = (1/N, . . . , 1/N).

Example 2 (Distributed Graph Signal Filtering): Graph fil-
ters are building blocks of various graph signal processing
applications, such as graph neural networks [6], [41], and can
be defined as follows. Let A denote the adjacency matrix
from (2) for graph G = (V, E). Define a diagonal matrix D �
diag(deg(1), . . . ,deg(N)) whose ith diagonal holds the degree
of node i ∈ V . Then, L � D−A is called the graph Laplacian
of G. A graph filter of order T is defined as,

y =

T∑

t=1

αtL
tx, (9)

where αt, . . . , αT denote the filter coefficients and Lt corre-
sponds to the tth power of L. Output (9) can be computed in T
iterations, by performing computations of the form (3) at each
step, and treating the output of each step as the input of the next
step. Specifically, by letting x(t) denote the input at iteration t,
one can compute

x(t) = Lx(t−1) (10)

with x(0) = x and evaluate (9) from y =
∑T

t=1 αtx
(t).

We consider a distributed scenario in which (1) is computed by
K workers (processors), connected through a multicast network.
Worker k is responsible from computing the outputs in (1) for
N
K nodes, given by a setRk such that

⋃K
k=1Rk = V andRk ∩

Rj = ∅ for k �= j. Each worker stores a subgraph of G denoted
byMk, whereRk ⊆Mk ⊆ V and |Mk| = |Mj | for all k, j ∈
[K].1 We then define the storage load of the system as follows.

Definition 1 (Storage Load): Given a subgraph allocation
M = (M1, . . . ,MK), the storage load of the distributed graph
processing system is characterized as,

r �
∑K

k=1 |Mk|
N

. (11)

Accordingly, worker k stores a subgraph with rN
K nodes.

Remark 1: The storage load r indicates what fraction of the
graph nodes is stored at each worker. The computations carried
out by each worker is also proportional to the storage load,
therefore, we use the term storage load and computation load
interchangeably throughout the paper.

We consider a scenario in which a large graph is stored (with
redundancy r) at the beginning and then is processed multiple
times. Storage takes place in an offline phase while graph pro-
cessing computations are carried out in an online phase. Given
a subgraph allocationM = (M1, . . . ,MK) and an output al-
location R = (R1, . . . ,RK), the distributed processing setup

1We assume that each worker can store a subgraph with an equal number of
nodes.

consists of three stages: map phase, communication (shuffle)
phase, and reduce phase.

Map Phase: In this phase, workers utilize their allocated
subgraphs to compute the corresponding intermediate values.
In particular, for every i ∈Mk, Worker k computes the inter-
mediate values gi = ({uji : j ∈ N (i)}).

Shuffle Phase: After computing the intermediate values,
Worker k constructs a message Zk ∈ Rzk of length zk, given
by a function Zk = φk({gi : i ∈Mk}), which consists of the
computations required by other workers. In the shuffle phase,
Worker k multicasts Zk to other parties in the system. At the
end of the shuffle phase, Worker k has all the information it
needs to compute (1) for the nodes in Rk. We formally define
the communication load of the shuffle phase as follows.

Definition 2 (Communication Load): The communication
load is defined as the total number of messages communicated
by K workers during the shuffle phase,

LG(M,R, r) �
K∑

k=1

zk (12)

for a given subgraph allocationM = (M1, . . . ,MK) and out-
put allocationR = (R1, . . . ,RK).

Reduce Phase: Worker k uses messages Z1, . . . , ZK com-
municated during the shuffle phase and local computations
({gi : i ∈Mk}) obtained during map phase to compute
(1) for the nodes in Rk, via a decoding function yj =

ψj
k(Z1, . . . , ZK , {gi : i ∈Mk}) for j ∈ Rk.
We wish to investigate the trade-off between the storage and

communication. In particular, increasing the storage load at each
worker increases the amount of computation that is carried out
by each worker, but can reduce the amount of communication
required between the workers. An extreme case is when the
memory of each worker is large enough to store the entire graph,
which corresponds to a storage load of r = K. In this case, each
worker can process the entire graph locally, which eliminates
the need for any communication. However, this setup does
not benefit from parallelization (employing multiple workers
to distribute the computation load and speed up the processing).
Moreover, in practice, for large scale graphs, storing the entire
graph is not possible and workers cannot store complete graphs.
Our goal is to understand this trade-off, i.e., how much reduction
in communication can be achieved with respect to the storage
(and computation) load at each worker.

Main Problem: Given a graphG and storage load r, find the
optimal subgraph allocationM, output allocationR, and coding
scheme that minimizes the communication load in (12).

III. TOPOLOGY-AWARE CODED COMPUTING (TACC)

We now introduce our topology-aware coded computing
framework, by providing an illustrative example first.

A. Illustrative Example

Consider the graph G = (V, E) depicted in Fig. 2 along with
a distributed computing setup with K = 3 workers. In the first
step, the set V is partitioned into K equal-sized parts and each

Authorized licensed use limited to: University of Southern California. Downloaded on July 03,2020 at 22:20:34 UTC from IEEE Xplore. Restrictions apply.

512 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 6, 2020

Fig. 2. Illustrative example of TACC. Initially, the graph is partitioned into
equal-sized parts and each part is assigned to a distinct worker. Next, nodes
are sorted and grouped according to their degrees. Nodes are then duplicated at
multiple workers (depending on their degree) to create redundancy in storage.
In the resulting storage, high degree nodes will be replicated at a larger fraction
of workers. Finally, the redundancy in storage and computations is utilized to
create multicasting opportunities for efficient communication.

part is associated with a distinct worker. To do so, one can use
any partitioning method ranging from random partitioning to
more advanced min-cut based partitioning methods [42]. Each
worker is responsible from computing the output values in (1)
corresponding to the nodes within the part it is assigned to.

In the second step, the nodes in each part are sorted in
descending order with respect to their degree, and divided intoQ
equal-sized chunks. In this example, we have Q = 2, therefore
each part is divided into 2 groups with 2 nodes in each group.
In the third step, we define a parameter rq associated with part
q = 1, 2. This parameter indicates that each node in group q is
to be stored at rq workers. For the example at hand, r1 = 2,
hence each node in the first group is replicated at 2 workers. On
the other hand, for the second group we have r2 = 1, hence the
nodes in the second group is stored at a single worker. We call
rq the storage load for group q = 1, 2.

The node allocation is done according to the following pro-
cedure. For each worker, the nodes associated with part q are
divided into

(
K−1
rq−1

)
equal-sized segments, and each segment

is replicated at a distinct subset of rq − 1 other workers. As
a result, each node in group q is stored at rq workers in total. By
selecting r1 > r2, one can ensure that each worker allocates a
larger fraction of its memory to higher degree nodes.

Finally, workers aggregate the intermediate computations that
are targeted for the same destination node, and form coded
messages to be communicated to the other workers. For instance,
Worker 1 multicasts the coded message e1,4x4 + (e10,11x11 +

Algorithm 1: Topology-Aware Coded Computing (TACC).
1: Initialize graph G = (V, E), number of workers K, parameters Q,

and r = (r1, . . . , rQ).
Subgraph and Output Allocation Phase:

2: Assign the outputsRk and subgraphMk determined from
Algorithm 2 to workers k ∈ [K].
Map Phase:

3: for workers k ∈ [K] do
4: Map the nodes inMk according to Algorithm 3.

Coded Aggregation and Shuffling Phase:
5: for workers k ∈ [K] do
6: Create and multicast the coded messages according to Algorithm 4.

Reduce Phase:
7: for workers k ∈ [K] do
8: Decode the coded messages by following the steps in Algorithm 5.
9: Compute the outputs (1) for the nodes inRk .

e10,1x1) to Workers 2 and 3. The value e10,11x11 + e10,1x1 is
needed by Worker 3 to evaluate y10, whereas e1,4x4 is needed
by Worker 2 to compute y1 from (1). To recover the missing val-
ues, Workers 2 and 3 evaluate e10,11x11 + e10,1x1 and e1,4x4,
respectively, and remove it from the coded message. Workers
communicate the missing values separately for the two groups.

B. Details of the TACC Framework

We now introduce the TACC framework. In essence, TACC
aims to reduce the inter-processor communication load by lever-
aging the interplay between the two strategies illustrated in
Fig. 1. These strategies correspond to two potential approaches
for handling high degree nodes: one can either store a high
degree node at many workers and eliminate the communication
cost completely for that node, or alternatively, can distribute
the nodes among different parties and take advantage of multi-
casting opportunities while communicating them. The overall
procedure of TACC is presented in Algorithm 1. It consists of
the following main phases.

Subgraph and Output Allocation Phase: Initially, the output
assignmentsR = (R1, . . . ,RK) are determined by partitioning
V intoK equal-sized, non-overlapping parts and assigning each
part to a different worker. This can be carried out by using any
graph partitioning method. For theoretical analysis, we consider
a random partitioning setup, i.e., graph nodes are partitioned into
K equal-sized non-overlapping parts randomly. For practical
applications, one can use a state-of-the-art min-cut based graph
partitioning tool such as [42].

In the next step, the subgraph allocations M=
(M1, . . . ,MK) are constructed as follows. For each k ∈ [K],
the nodes in Rk are sorted in descending degree order. The
ordered nodes are divided into Q equal-sized groups, such that
each group has |Rk |

Q = N
QK nodes. As a result, the first (last)

group consists of the N
QK highest (lowest) degree nodes in

Rk. We represent this sorted and grouped version of Rk by
R̃k = (R̃k1, . . . , R̃kQ).

Each node in group q ∈ [Q] is then duplicated at rq workers for
a given rq ∈ [K] as follows. First, R̃kq is randomly divided into(
K−1
rq−1

)
equal-sized, non-overlapping parts. Then, each part is

stored at a distinct subset of workers of size rq (including Worker

Authorized licensed use limited to: University of Southern California. Downloaded on July 03,2020 at 22:20:34 UTC from IEEE Xplore. Restrictions apply.

GÜLER et al.: TACC: TOPOLOGY-AWARE CODED COMPUTING FOR DISTRIBUTED GRAPH PROCESSING 513

Algorithm 2: Subgraph and Output Allocation Phase.
Input: Graph G = (V, E), number of workers K, parameters Q and
r = (r1, . . . , rQ).

Output: Output allocationR = (R1, . . . ,RK), subgraph allocation
M = (M1, . . . ,MK).

1: Partition V into K equal-sized partsR = (R1, . . . ,RK).
2: for k = 1, . . . ,K
3: Let R̃k ← {Rk sorted using node degrees, in descending order}

4: Divide R̃k into Q equal-sized groups (R̃k1, . . . , R̃kQ). // R̃k1

holds the highest degree nodes from R̃k .
5: for q = 1, . . . ,Q
6: Divide R̃kq into

(
K−1
rq−1

)
equal-sized, non-overlapping parts.

7: Assign each part to a distinct subset of rq workers (including
Worker k).
// This is possible since there are exactly

(
K−1
rq−1

)
distinct subsets.

8: for k = 1, . . . ,K
9: Return the subgraphMk as the collection of all the nodes assigned

to Worker k.

k). Note that this is possible since there are exactly
(
K−1
rq−1

)
such

subsets of [K]. At the end of this step, each subset of workers
S ⊆ [K] of size rq will exclusively store N

Q(K
rq)

nodes, for q ∈
[Q]. We denote the set of nodes stored exclusively by the workers
in S withMq

S , and define,

Mq
k � {Mq

S : k ∈ S ⊆ [K], |S| = rq} (13)

as the subgraph stored at Worker k for group q ∈ [Q]. The sub-
graph allocated to Worker k is then given byMk =

⋃Q
q=1M

q
k.

The storage load of the system is given by,

r =

∑K
k=1 |Mk|
N

=
1

Q

Q∑

j=1

rj . (14)

Remark 2: Our graph allocation strategy is based on two sys-
tem parameters. The first parameter, Q, groups the vertices that
have similar degrees. The second parameter, r = (r1, . . . , rQ),
indicates that each node in group q is duplicated at rq workers.
By selecting r1 ≥ . . . ≥ rQ, we ensure that high degree nodes
are stored at a larger fraction of workers.

We note that one can always find parameters Q and r so that
the maximum memory size of the workers is not exceeded.2

That is, if the workers have no additional memory for duplicate
nodes, i.e., each worker can only store N

K nodes, we selectQ = 1
and r1 = 1. On the other hand, if the memory of each worker
is large enough to store the entire graph, we select Q = 1 and
r1 = K. Hence, memory constraints of the workers can always
be satisfied. Finally, if ri = rj for some i �= j, one can combine
the nodes within these two groups at each worker, and treat them
as a single group during the duplication operation as well as the
remaining steps of the algorithm. The individual steps of this
phase are presented in Algorithm 2.

Remark 3: In order to keep our framework flexible, we allow
TACC to be initialized with any graph partitioning strategy.
Then, the communication load achieved by our coding frame-
work will be no greater than a system that parallelizes the

2We assume that workers have equal-sized memory and each worker can store
at least 1

K fraction of the nodes

Algorithm 3: Map Phase.
Input: Subgraph allocationM = (M1, . . . ,MK).
Output: Intermediate values {uji : i ∈Mk, j ∈ N (i)} for k ∈ [K].
1: for Workers k ∈ [K] do
2: for i ∈Mk

3: for j ∈ N (i)
4: Compute the intermediate value uji using (4).

graph with the same initial partitioning, but without coding.
This is due to the fact that as we use multicasting, there is no
additional cost when some information is needed by more than
one worker. The only additional cost that may be introduced
with the added redundancy is if the algorithm is an iterative
one. Then, the updated node values after the reduce phase need
to be communicated back to the workers who need them for
the next round. This cost, however, is typically smaller than the
communication cost of the shuffle phase [18], [43], as long as r
is relatively small compared to the total number of workers and
the average node degree.

Map Phase: In this phase, Worker k maps the nodes inMk

using the map function from (4), to obtain the intermediate
values,

{uji : i ∈Mk, j ∈ N (i)}. (15)

Each worker maps a total number of |Mk| =
N

∑Q
j=1 rj

QK nodes.
This phase follows the standard mapping stage of distributed
algorithms, and unlike the previous stage, is not specific to
the proposed algorithm. The individual steps of this phase are
provided in Algorithm 3.

Coded Aggregation and Shuffling Phase: In this phase, we
utilize the redundancy created during graph allocation for coded
multicasting. For each group q ∈ [Q], consider a set of workers
S of size |S| = rq + 1. Define,

Uk
S\{k} = {uji : j ∈ Rk, (i, j) ∈ E , i ∈Mq

S\{k}} (16)

as the set of intermediate values needed by worker k and
known exclusively by workers in S\{k}, where Mq

S\{k} =⋂
k′∈S\{k}M

q
k′ from (13). Next, workers in S\{k} aggregate

the intermediate values required for the computations in (1),

uj =
∑

i∈Mq
S\{k}

uji, j ∈ Rk (17)

and form a vector uk
S\{k} = ({uj : j ∈ Rk}). Then, uk

S\{k} is

evenly split into rq segments. Segment s is denoted by uk
S\{k},s.

Each segment is assigned to a distinct worker in s ∈ S\{k}.
This process is then repeated for every k ∈ S . At the end, each
worker is assigned to a total number of

(|S|−1
rq−1

)
= rq segments.

Worker j ∈ S then computes a coded message by combining
the assigned segments,

ZSj =
∑

k∈S\{j}
uk
S\{k},j (18)

via zero-padding if needed to ensure that the segment sizes are
equal, and multicasts the message to the workers in S\{j}. This

Authorized licensed use limited to: University of Southern California. Downloaded on July 03,2020 at 22:20:34 UTC from IEEE Xplore. Restrictions apply.

514 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 6, 2020

Algorithm 4: Coded Aggregation and Shuffling Phase.
1: for q = 1, . . . ,Q
2: for each S ⊆ [K] of size rq + 1
3: for each k ∈ S, workers in S\{k} do
4: Aggregate the intermediate values using (17) to find uj for

j ∈ Rk .
5: Construct the vector uk

S\{k} = ({uj : j ∈ Rk}).
6: Split uk

S\{k} into rq equal-sized segments, given by uk
S\{k},s

for s ∈ S\{k}.
7: Assign each segment s to a distinct worker s ∈ S\{k}.
8: for each worker j ∈ S do
9: Compute the coded message ZSj from (18).

10: Multicast ZSj to the workers in S\{j}.

Algorithm 5: Reduce Phase.
1: for q = 1, . . . ,Q
2: for each S ⊆ [K] of size rq + 1
3: for each worker k ∈ S do
4: for j ∈ S\{k}
5: Receive ZSj from worker j.
6: Remove the known segments to compute the unknown

segment from (19).

process is repeated for each subset S ⊆ [K] of size rq and group
q ∈ [Q]. This phase is presented in Algorithm 4.

Reduce Phase: During this phase, each worker recovers the
intermediate values needed to compute (1). For each group
q ∈ [Q], there are

(
K

rq+1

)
subsets S of size rq + 1. Worker k is

involved in
(
K−1
rq

)
of them, and within each subset, there are rq

distinct segments uk
S\{k},s known by other workers s ∈ S\{k}

and needed by Worker k. Hence, Worker k needs to recover∑Q
q=1

(
K−1
rq

)
rq distinct segments in total. Consider a group

q and set S ⊆ [K] of size rq + 1. For workers j, k ∈ S and
j �= k, there are

(|S|−2
rq−2

)
= rq − 1 subsets of S that has size rq

and contain both j and k. Among the rq segments associated
with Worker j, rq − 1 of them are known also by Worker k,
who needs the remaining segment. After receiving ZSj from
workers j ∈ S\{k}, Worker k can remove the known segments
{uk′

S\{k′},j}k′∈S\{j,k} to compute the unknown segments,

uk
S\{k},j = ZSj −

∑

k′∈S\{j,k}
uk′

S\{k′},j ∀j ∈ S\{k}. (19)

At the end, Worker k recovers rq distinct segments for the subset
S . Since there are

(
K−1
rq

)
such subsets per group q, Worker kwill

recover all of the required
∑Q

q=1

(
K−1
rq

)
rq segments. The steps

of this phase are presented in Algorithm 5.
Remark 4: Algorithm 1 defines our coding scheme for a

general graph, where the coded messages are created as shown
in (17) and (18). Our coding scheme is defined algorithmically,
and presents flexibility in choosing the order in which the nodes
are aggregated, as long as they are in the specified sets given in
(17) and (18). Hence, any order can be used for aggregation, as
long as the order is known at the decoder.

IV. EXPECTED COMMUNICATION LOAD ANALYSIS

FOR RANDOM GRAPHS

In this section, we analyze the expected communication load
of TACC for random graph structures.

A. General Theoretical Bounds

Introduced independently by Erdös-Rényi and Gilbert, ran-
dom graphs have proved to be a powerful tool for understanding
graph behavior and demonstrating the existence of various graph
properties [44], [45]. The classical Erdös-Rényi random graph
model considers a graph in which an edge between any two
vertices occurs with some fixed probability 0 ≤ p ≤ 1, inde-
pendently from other edges. As a result, every vertex has an
average degree equal to pN , which can be restrictive in modeling
real-world graphs.

Generalized random graphs extend the classical model to
describe a wider range of scenarios, by allowing the vertices to
take arbitrary degree distributions [21]–[23]. Specifically, edge
probabilities in these graphs are governed by vertex weights,
which can be deterministic [21], [22] or random [23]. The
average degree of each vertex is determined by its weight.
This in turn facilitates modeling graphs with irregular degree
distributions. Our focus is on the following class of generalized
random graphs.

Definition 3 (Generalized Random Graph): Define W
weights N ≥ λ1 ≥ . . . ≥ λW ≥ 0. Assign each vertex i ∈ V a
random weight Wi such that,

P (Wi = λw) =
1

W
for w ∈ [W]. (20)

Then, draw an edge between each pair of vertices i and j with
probability WiWj

∑N
l=1 Wl

.

Accordingly, node i has an average degree of∑N
j=1

WiWj
∑N

l=1 Wl
=Wi, i.e., a fraction of 1

W nodes is expected

to have an average degree of λw for each w ∈ [W]. A large
variety of graph structures can be realized through this model,
by creating different degree structures using W and {λj}j∈[W].
A special case is the classical random graph model, which can
be obtained by setting W = 1 and λ1 = pN . In this case, every
vertex has a fixed weight (an average degree of λ1), and an edge
exists between any two vertices with probability λ1

N = p. We
next characterize the minimum expected communication load
for random graphs as a function of the storage load.

Definition 4: Given a storage load r, we define the minimum
expected communication load as,

L∗(r) = inf
M,R

EG[LG(M,R, r)] (21)

where the expectation is taken over all graph realizations.
L∗(r) identifies the trade-off between the storage load and

the expected communication load of the system. The optimal
storage-communication strategy that achieves L∗(r) is an open
problem in general. Hence, we elaborate on our design principles
through asymptotic bounds on (21).

We first present a lower bound on L∗(r) for a given storage
load.

Authorized licensed use limited to: University of Southern California. Downloaded on July 03,2020 at 22:20:34 UTC from IEEE Xplore. Restrictions apply.

GÜLER et al.: TACC: TOPOLOGY-AWARE CODED COMPUTING FOR DISTRIBUTED GRAPH PROCESSING 515

Fig. 3. Demonstration of the lower bounds µ1 and µ2 from Theorem 2 with
respect to the storage (computation) load for a generalized random graph.

Theorem 1: (Lower Bound) For any computation scheme
in which each worker stores rqN

WK nodes with average degree
(weight) λ

1+
(q−1)W

Q
, . . . , λ qW

Q
for q ∈ [Q],

L∗(r) ≥

N

KW

W∑

i=1

(
1−

Q∏

q=1

qW
Q∏

j=1+
(q−1)W

Q

(
1− λiλj

N
W

∑W
t=1 λt

) N
W (1−rq

K))
.

(22)

Proof: The proof is provided in Appendix A. �
In the following, we show that the lower bound of (22)

decreases when more storage is allocated to high degree nodes
(compared to low degree nodes), while keeping the total storage
of each worker the same. In other words, it is better to repli-
cate more those nodes with higher degree, as proposed in our
topology-aware graph allocation, since it reduces the minimum
number of messages required by each worker.

Theorem 2: Consider any computation scheme in which each
worker stores rN

WK nodes with degree λi, where i ∈ [W] (i.e., the
same allocation of redundancy is used for all nodes, regardless
of their degree). Let μ1 be the lower bound from (22) for this
setup. Next, consider another scheme where each worker stores
riN
WK nodes with degree λi, for some r1 ≥ . . . ≥ rW such that

r = 1
W

∑W
i=1 ri (i.e., high degree nodes are replicated more,

while keeping the total number of nodes stored at each worker
the same). Let μ2 be the lower bound from (22) for this second
case. Then, μ2 ≤ μ1.

Proof: Please see Appendix B. �
While Theorem 2 provides some support to our strategy

of linking replication to node degree, it is based on a lower
bound for L∗(r), which suggests that the exact conditions for
which irregular node allocation is strictly better are still an open
question. Fig. 3 provides an illustration of the lower bounds μ1

andμ2 from Theorem 2 with respect to the storage (computation)

load r for a generalized random graph withN = 1000 nodes, de-
gree parametersW = 5 and (λ1, . . . , λW) = (200, 20, 10, 5, 1),
and K = 5 workers. For μ2, the storage load at each worker is
selected as follows,

r = (r1, . . . , r5) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1, 1, 1, 1, 1) for r = 1
(5, 2, 1, 1, 1) for r = 2
(5, 3, 3, 3, 1) for r = 3
(5, 4, 4, 4, 3) for r = 4
(5, 5, 5, 5, 5) for r = 5.

(23)

We observe in Fig. 3 that the lower bound for the communication
load of topology-aware coding is up to 48% lower than that of
topology-independent coding.

Remark 5: r is a system parameter to be determined by the
system designer, by taking into account the graph structure and
memory size of each worker. We have found in our experiments
that the following strategy, which is motivated by Theorem 2,
provides a good methodology for selecting r for graphs with
irregular degree structures. Initially, set r = (r1, . . . , rQ) =
(r, . . . , r) where r is determined by the memory size of the
workers, then gradually reduce the last term and increase the
first term by equal amounts, i.e., set rQ − κ and r1 + κ for some
κ ∈ N so that 1 ≤ rQ − κ and r1 + κ ≤ K.

Next, we provide an upper bound onL∗(r) for the generalized
random graph model by using TACC.

Theorem 3: (Upper Bound) For topology-aware coded graph
processing with aggregation, the communication load for the
generalized random graph model is bounded from above by,

L∗(r) ≤
Q∑

q=1

K

rqsq

(
K − 1

rq

)
⎛

⎜⎝ln(rq) +

W∑

m=1

N

WK

× ln

⎛

⎜⎝

qW
Q∏

l=1+
(q−1)W

Q

(
1− λmλl

N
W

∑W
t=1 λt

) N

W(Krq)

+ esq

⎛

⎜⎝1−

qW
Q∏

l=1+
(q−1)W

Q

(
1− λmλl

N
W

∑W
t=1 λt

) N

W(Krq)

⎞

⎟⎠

⎞

⎟⎠

⎞

⎟⎠ ,

(24)

for any s1, . . . , sQ > 0 and Q such that W
Q ∈ Z.

Proof: The proof is provided in Appendix C. �
We note that the two key aspects of TACC, namely topology-

aware subgraph allocation and coded aggregation can be applied
independently from one another. As such, one can obtain the
expected communication load specifically for the coded aggre-
gation setup by settingQ = 1 in Theorems 3 and 1. In particular,
by lettingQ = 1 and r1 = r, we obtain a topology-independent
subgraph allocation model where each node is replicated at an
equal number of workers, independent of its degree pattern. This
special case is related to the coded computing framework of [18],
the difference being the coded aggregation phase. Specifically,
we construct the coded messages over the aggregated interme-
diate values, instead of the intermediate values themselves as
in [18]. Formally, the upper and lower bounds on the expected
communication load for coded aggregation is given as follows.

Authorized licensed use limited to: University of Southern California. Downloaded on July 03,2020 at 22:20:34 UTC from IEEE Xplore. Restrictions apply.

516 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 6, 2020

Corollary 1: For the generalized random graph model, the
communication load for coded aggregation satisfies,

L∗(r) ≤ K

rs

(
K − 1

r

)(
ln(r) +

W∑

m=1

N

WK

× ln

⎛

⎝
W∏

l=1

(
1− λmλl

N
W

∑W
t=1 λt

) N

W(Kr)

+ es

⎛

⎝1−
W∏

l=1

(
1− λmλl

N
W

∑W
t=1 λt

) N

W(Kr)

⎞

⎠

⎞

⎠

⎞

⎠

for any s > 0. (25)

Corollary 2: For any computation scheme in which each
worker stores rN

WK nodes with average degree (weight)
λ1, . . . , λW , the communication load satisfies,

L∗(r) ≥ N

KW

W∑

i=1

(
1−

W∏

j=1

(
1− λiλj

N
W

∑W
t=1 λt

) N
W (1− r

K))
.

(26)

B. Erdös-Rényi Graph Model

We now specialize our bounds from Corollary 1 and 2 to
the Erdös-Rényi random graph with edge probability p, such
that each edge occurs with a fixed probability 0 < p < 1. By
setting W = 1 and λ1 = pN in (25), we obtain the following
upper bound for the Erdös-Rényi random graph with coded
aggregation,

L∗(r) ≤ min
s>0

K

rs

(
K − 1

r

)(
ln(r) +

N

K

× ln

(
(1− p)

N

(Kr) + es
(
1− (1− p)

N

(Kr)

)))

(27)

≤ K

r

(
K − 1

r

)
+
N

r

(
K − 1

r

)

×

⎛

⎝ ln

(
r − (r − 1)(1− p)

N

(Kr)

)

ln r

⎞

⎠ (28)

where (28) follows from setting s = ln(r) in (27). As N →∞,

we observe that (1− p)
N

(Kr) → 0 for any p > 0 and as a result,
(28) reduces to,

L∗(r) ≤ N

r

(
K − 1

r

)
. (29)

We next consider the lower bound from Corollary 2 for the
Erdös-Rényi random graph with edge probability p. By setting
W = 1 and λ1 = pN in (22), for this case we obtain,

L∗(r) ≥ N

K

(
1− (1− p)N(1− r

K)
)
. (30)

In the following, we compare the expected communication load
for an Erdös-Rényi random graph with edge probability p for the
three setups, namely, our coded aggregation strategy from (29),
the uncoded transmission strategy from [7], and coding without

aggregation from [18]. For the Erdös-Rényi graph, the expected
communication load for uncoded transmission from [7] is,

L∗uncoded(r) = N2p
(
1− r

K

)
(31)

which follows from the fact that each worker stores Nr
K nodes,

and needs to process the output values for N
K nodes. For each

node to be processed, an average number of p(N − Nr
K) inter-

mediate values are needed from other workers, each intermediate
value corresponding to an edge between the node to be processed
by the worker and nodes mapped by the remaining workers.
As a result, a total number of K N

K p(N −
Nr
K) = N2p(1− r

K)
messages are needed by all K workers. On the other hand, the
communication load for coded computing without aggregation
is, from [18],3

L∗no-agg(r) =
N2p

r

(
1− r

K

)
. (32)

When compared with (29), it can be observed that the communi-
cation load for both uncoded transmission and coded computing
without aggregation scales with respect to N2, whereas our
aggregation strategy reduces this to a factor ofN . Also, the com-
munication load for uncoded transmission and coded computing
without aggregation scales linearly with respect to p, hence
for dense graphs the communication load grows linearly with
respect to the edge probability. On the other hand, as N →∞,
the communication load for coded aggregation does not scale
with respect to the edge probability p. Therefore, the benefits of
aggregation becomes more significant as the graph size becomes
larger and the graph connectivity becomes denser, making coded
aggregation a viable setup for large-scale graph processing.

C. Stochastic Block Model

We next specialize our bound to the K-block stochastic block
model. To do so, we consider a graph ofN nodes that consists of
K equal-sized clusters where the probability of an edge between
any two nodes is 0 < p < 1 if the nodes belong to the same
cluster and 0 < q < 1 if the nodes belong to different clusters,
where q < p. We initially partition the graph across K workers
such that each worker is assigned to a distinct block, then apply
our coded aggregation technique.

For this graph model, the expected degree is the same for
all nodes, since a node is connected to each node within the
same cluster with probability p and each node from different
clusters with probability q, and the cluster sizes are equal. Due
to this homogeneity in the degree structures of the nodes, we use
a single group in our algorithm by selecting Q = 1. Then, the
computation load for the K-block stochastic block model can be
bounded by,

L∗(r)

≤ K

r

(
K−1
r

)
+
N

r

(
K−1
r

)(
ln

(
r−(r−1)(1−q)

N

(Kr)
)

ln r

)

(33)

3We note that [18] reports the normalized communication load where (32) is
divided by N2.

Authorized licensed use limited to: University of Southern California. Downloaded on July 03,2020 at 22:20:34 UTC from IEEE Xplore. Restrictions apply.

GÜLER et al.: TACC: TOPOLOGY-AWARE CODED COMPUTING FOR DISTRIBUTED GRAPH PROCESSING 517

where the proof follows along the lines of Appendix C by
settingQ = 1 and calculating the expectation by using the given
initial partitioning strategy and edge probabilities. Note that the
difference between (33) and the Erdös-Rényi bound from (28)
is that the communication load for the K-block stochastic block
model depends on the inter-cluster edge probability q.

On the other hand, the communication load for the K-block
stochastic block model with uncoded transmission is,

L∗uncoded(r) = N2q
(
1− r

K

)
. (34)

Lastly, we consider the communication load for coding without
aggregation from [18]. We first note that the stochastic block
model considered in [18] is a 2-block stochastic model, as
opposed to the K-block stochastic model considered in this work.
For the 2-block stochastic model with equal sized blocks, the
communication load from [18] is given by,

L∗no-agg(r) =
N2(p+ q)

2r

(
1− r

K

)
, (35)

where the dependency of the bound on p is due to the fact
that in the node allocation strategy employed by [18], part of
the nodes allocated to each worker comes from the first block
and the remaining part comes from the second block. Hence, a
worker may require information about a given node both from
the neighbors within the same block as well as neighbors from
different blocks.

By comparing (33) with (34) and (35), we observe that for the
stochastic block model, the communication load for coding with
aggregation from (33) scales linearly with respect to the number
of nodes N whereas for the two baselines from (34) and (35)
this scaling is quadratic, i.e., with respect to N2. Moreover, as
observed from (33), for our coding with aggregation strategy, the
dependency of the communication load on the edge probabilities
decreases as N →∞.

D. Random Bipartite Graph Model

Finally, we specialize our bound to the random bipartite graph
model. To do so, we consider a bipartite graph with N nodes
consisting of two sets of nodes of size N

2 . The probability that
an edge exists between two nodes belonging to different sets is
0 < p < 1, whereas no edge exists between the nodes belonging
to the same set.

In this setup, for the initial partitioning of the nodes to the
workers, we adopt the following strategy. We divide each set
into K parts, and assign each worker a distinct part from each
set. As a result, each worker will receive a total number of
N
K nodes, N

2K nodes from the first set and N
2K nodes from

the second set. The intuition behind this strategy is that in
a random bipartite graph, edges only occur across the nodes
belonging to different sets. Therefore, storing nodes that belong
to different sets at the local memory of the workers will reduce
the number of edges across the workers, compared to storing
nodes from a single set. Then, we apply our coded aggregation
strategy.

Note that in this setup also, the expected degree is the same
for every node, therefore, the degree structure is homogeneous
across the nodes. Accordingly, we again use a single group in
our algorithm by selecting Q = 1. Then, the expected commu-
nication load for the random bipartite graph model with coded
aggregation can be bounded as,

L∗(r)

≤ K

r

(
K−1
r

)
+
N

r

(
K−1
r

)(
ln

(
r − (r − 1)(1− p)

N

2(Kr)
)

ln r

)

(36)

where the proof again follows along the lines of Appendix C by
setting Q = 1 and using the given graph allocation strategy and
edge probability.

In contrast, the expected communication load for the random
bipartite graph model by using uncoded transmission from [7]
is,

L∗uncoded(r) =
N2

2
p
(
1− r

K

)
, (37)

whereas the expected communication load by using coding
without aggregation from [18] is,

L∗no-agg(r) =
N2p

2r

(
1− 2r

K

)
. (38)

By comparing (36) with (37) and (38), we observe that for the
random bipartite graph also, the communication load for coding
with aggregation scales linearly with respect to the number of
nodes N , whereas for the two benchmarks from (37) and (38),
this scaling is quadratic. Moreover, asN →∞, the dependency
of the communication load to the edge probability decreases,
but with a slower rate than the Erdös-Rényi graph. The intuition
behind this is that, as N grows, the probability that a node is
connected to at least one other node grows at a faster rate in an
Erdös-Rényi graph than a random bipartite graph with the same
parameter p. In the former, each node can be connected to any
of the N − 1 other nodes with the same probability, whereas in
the latter, each node can be connected to N

2 other nodes. Due
to aggregation, our communication load depends on whether or
not a node has neighbors belonging to a different worker, rather
than the number of neighbors. In the Erdös-Rényi graph, this
information converges more quickly as N grows, since overall
each node will have a higher probability of being connected,
than the random bipartite graph.

E. Numerical Evaluations

In the remainder of this section, we illustrate the
communication-computation trade-off of our coded graph pro-
cessing framework for various random graph structures.

1) Erdös-Rényi Graphs: Initially, we investigate the benefits
of aggregation in reducing the communication load, by setting
Q = 1 and considering an Erdös-Rényi graph with edge prob-
ability p. Then, we compare the communication load for coded
aggregation from (29) with uncoded transmission from (31) and
coded computing without aggregation from (32). Fig. 4a and 4b

Authorized licensed use limited to: University of Southern California. Downloaded on July 03,2020 at 22:20:34 UTC from IEEE Xplore. Restrictions apply.

518 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 6, 2020

Fig. 4. Communication-computation trade-off for Erdös-Rényi graph with
(a) p = 0.01, (b) p = 0.1, respectively.

show the communication load for an Erdös-Rényi graph with
N = 1000 nodes and K = 5 workers. Fig. 4a compares the
communication load when p = 0.01, with an average degree
of 10 for each node. Fig. 4b compares the communication load
when p = 0.1, with an average degree of 100 for each node.

Fig. 4a and 4b show that aggregation can have a great impact
in reducing the communication load, moreover, the benefits of
aggregation increases as the graph becomes denser. In particular,
we observe from Fig. 4b that even when the storage load is 1,
which represents the case when there is no overlap between the
subgraphs stored at different workers, aggregation itself reduces
the communication load by 95% compared to the other schemes.
When the storage load is increased to 4, coded aggregation
reduces the communication load by 96% with respect to coding
without aggregation, and 99%with respect to uncoded transmis-
sion.

2) Barabási-Albert Graphs: We next demonstrate the ben-
efits of topology-aware coded computing, by considering a
Barabási-Albert random graph. Unlike the Erdös-Rényi random
graph where the average degree of each node is equal, real-world
networks often exhibit highly asymmetric degree structures.

Fig. 5. Communication-computation trade-off for the Barabási-Albert graph.

The degree distribution of many real-world graphs, such as the
World Wide Web, follow a power-law, in which the fraction of
nodes in the graph with degree k scales with respect to k−γ for
some parameter γ. These graphs are also known as scale-free
networks.

Barabási-Albert graph is a random graph proposed to model
the behavior of such scale-free networks [46]. To do so, it starts
with m seed nodes, and iteratively adds a new node and k links
from the new node to the existing nodes, where the probability
that the new node will connect to an existing node is proportional
to the existing node’s degree. Therefore, higher degree nodes
are more likely to link to new nodes, which is also known as
the preferential attachment model. In our setup, we consider a
Barabási-Albert graph with N = 1000 nodes and m = k = 2.

We consider a distributed system with K = 5 workers, and
simulate the following three scenarios. The first one is coded
computing without aggregation from [18]. The second one is
topology-independent coded aggregation, obtained by setting
Q = 1. The third scenario is topology-aware coded computing
with aggregation, where we let Q = 5. We then compare the
communication load for the three setups, by keeping the memory
size of each worker the same, that is, each worker can store the
same number of nodes in all three scenarios. To do so, we denote
storage load for the first two scenarios as r ∈ [K], and select the
storage load r = (r1, . . . , rQ) for the third scenario as in (23)
so that (14) is satisfied. As a result, the average storage load is
the same for all three scenarios.

Fig. 5 shows the communication-computation trade-off for
the three setups. As expected, for r = 1, i.e., when there is
no overlap between the subgraphs stored at different work-
ers, performance of topology-independent and topology-aware
coded aggregation schemes are the same, and both are better
than coding without aggregation by 36%. In this case, the
communication load for topology-independent coding without
aggregation is very large compared to the remaining two se-
tups. As we increase the storage load, topology-aware coding
consistently outperforms the topology-independent setup. For
r = 4, topology-aware coding provides up to 44% improvement

Authorized licensed use limited to: University of Southern California. Downloaded on July 03,2020 at 22:20:34 UTC from IEEE Xplore. Restrictions apply.

GÜLER et al.: TACC: TOPOLOGY-AWARE CODED COMPUTING FOR DISTRIBUTED GRAPH PROCESSING 519

Fig. 6. Communication-computation trade-off for generalized random graph.

over topology-independent coding with aggregation, whereas
the gain of topology-independent coding with aggregation over
topology-independent coding without aggregation is 47%. As
such, topology-aware coding with aggregation leads up to
70% improvement over topology-independent coding without
aggregation. Finally, coding with aggregation consistently out-
performs coding without aggregation.

3) Generalized Random Graphs: Lastly, we investigate the
performance of topology-aware coded computing on a gen-
eralized random graph. To do so, we consider a graph with
N = 10000 nodes. For the node weights, we let W = 10,

(λ1, . . . , λW) = (100, 4, 4, 4, 4, 2, 2, 2, 2, 1), (39)

and assign a weight to each node uniformly at random as indi-
cated in (20). Edges are constructed according to Definition 3.
Accordingly, we expect10%of the nodes to have a degree of 100,
40% of the nodes to have a degree of 4, 40% to have a degree
of 2, and 10% to have a degree of 1. As such, the generated
graph has a highly irregular degree structure. We consider a
distributed system with K = 5 workers and simulate the three
scenarios described in Section IV-2. For the topology-aware
coded aggregation scenario, we choose the same parameters
from (23).

Fig. 6 demonstrates the communication load for the three se-
tups versus storage load. When r = 1, performance of topology-
independent and topology-aware coded aggregation schemes are
equal, and better than the coding scheme without aggregation
by 81%. As storage load is increased, topology-aware coding
consistently outperforms the topology-independent scenario,
leading to up to 61% improvement when r = 4. Compared to
coding without aggregation, both setups consistently perform
better, where topology-aware coded aggregation leads up to
a 96% improvement when r = 4. Lastly, we show that there
exists scenarios for which topology-aware subgraph allocation
is strictly better than one that does not take into account the
graph topology.

Corollary 3: Coded graph processing with topology-aware
graph allocation (Q > 1) can strictly outperform coding with
topology-independent graph allocation (Q = 1).

Proof: We prove this result by demonstrating a scenario for
which the lower bound for the topology-independent subgraph
allocation (Q = 1) is strictly greater than the upper bound for a
degree-aware subgraph allocation (Q > 1). To do so, we again
consider the generalized random graph with N = 10000 nodes
with weights assigned randomly from (39). We first consider a
scenario with Q = 1 and r = 4. For this scenario, the lower
bound from (26) on the communication load indicates that
L∗(r) ≥ 913. Next, we consider a scenario with Q = 5 and
r = (5, 4, 4, 4, 3). For this scenario, we have from (24) the fol-
lowing upper bound on the communication load L̃∗(r) ≤ 865.
Lastly, from (14), we have that the average storage load is
equal (r = 1

5

∑5
j=1 rj = 4) for both scenarios. Therefore, the

topology-aware coding strategy (Q = 5) is strictly better than
the topology-independent coding strategy (Q = 1). �

V. PERFORMANCE ON REAL-WORLD NETWORKS

This section demonstrates the performance of our coded graph
processing framework on various real-world systems.

Google Web Graph Implementation: We first investigate the
performance of the topology-aware coded computing frame-
work (TACC) on a real-world scale-free network, and demon-
strate the effectiveness of topology-aware coded computing over
the topology-independent frameworks. An important real-world
example of a scale-free network is a web graph, which represents
the connectivity structure between webpages in the World Wide
Web. In this graph, nodes represent webpages and edges denote
the hyperlinks between webpages. Web graphs are utilized for
various graph computations such as the PageRank algorithm
for determining the ranking of webpages in web search. In our
evaluations, we consider the web graph released by Google as
part of a programming contest in 2002, which is available in [24].
The graph has 875,713 nodes and 5,105,039 directed edges.
Average node degree is 5.57, hence the graph is relatively sparse.

For the initial partitioning of the graph in order to create
the sets R = (R1, . . . ,RK), we utilize the METIS graph par-
titioning tool from [15], [42]. The motivation behind using a
structured graph partitioning tool instead of random partitioning
is to reduce the initial cut size, i.e., the number of edges whose
endpoints are stored at different workers, and obtain a smaller
boundary than random partitioning. Next, we consider the three
scenarios from Section IV-3 corresponding to: coding with-
out aggregation, topology-independent coding with aggregation
(Q = 1), and topology-aware coding with aggregation (Q = 5).
For the last scenario, the storage load is defined as in (23).

We provide the comparison of the communication load for
the three schemes in Fig. 7. As observed from Fig. 7a, aggre-
gation can lead to an improvement of 57% over the coding
strategy without aggregation, whereas topology-aware coding
with aggregation can lead up to an 82% improvement. Hence,
aggregation can be very useful in reducing the communication
cost for sparse graphs with irregular degree structures, which
complements our results from Section IV-1. In Fig. 7b, we

Authorized licensed use limited to: University of Southern California. Downloaded on July 03,2020 at 22:20:34 UTC from IEEE Xplore. Restrictions apply.

520 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 6, 2020

Fig. 7. Demonstrating the gain of the topology-aware coded computing
(TACC) algorithm over (i) topology-independent coding with aggregation and
(ii) coding without aggregation, in reducing the communication load for running
PageRank on the Google web graph dataset consisting of 875,713 nodes and
5,105,039 edges.

compare the communication load for topology-independent and
topology-aware coding schemes, both with aggregation, and find
that topology-aware subgraph allocation can lead up to 57%
improvement over the topology-independent setup.

Amazon EC2 Cloud Implementation: We next consider a
distributed implementation of the PageRank algorithm from
Section 1 on the Amazon EC2 cloud computing platform. A
distributed system with 12 workers is constructed using the
StarCluster open source cluster-computing toolkit [47]. Com-
munication between the workers is implemented by using the
MPI4Pymessage passing interface on Python [48]. All work-
ers are initialized using the instance type m4.large and with a
maximum bandwidth of 100 Mbps.

An important feature of cloud environments is that network
conditions can become highly variable, on which the user has
no control. In fact, cloud network architectures allow jobs from

TABLE I
BREAKDOWN OF THE TOTAL EXECUTION TIME FOR PAGERANK

IMPLEMENTATION ON THE AMAZON EC2 CLOUD

many users to share the same resources, such as compute ma-
chines and network traffic. One implication of this on our coding
framework is that we have no control over the scheduling of
the coded multicast instances, as well as the overhead that is
brought by creating them. This could have a significant impact
on the shuffle time of our coded computing scheme, since our
coded aggregation scheme requires

(
K
r+1

)
multicast groups to be

created for a storage load of r. As a result, even though the total
number of messages that is transmitted between the workers is
reduced when r is increased, the cost associated with creating
more multicast instances may in turn negate the gain obtained
from reduced communication load. To address this, we adopt
in our cloud experiments the task allocation scheme proposed
in [49], which aims at reducing the number of communication
instances that needs to be created in the coded multicasting setup.
In particular, this setup requires qr−1(q − 1) multicast groups
instead of

(
K
r+1

)
, where q = K

r .
We then implement our coded aggregation framework on

an Erdös-Rényi random graph with N = 207,360 nodes and
edge probability p = 0.0001, with an average node degree of
20.7, and computation load r = 4. Since the degree structure
of an Erdös-Rényi graph is uniform across all nodes, it has a
regular graph topology, hence we consider a single group by
settingQ = 1 in our algorithm. Table I demonstrates the overall
execution time of our algorithm (TACC) as well as the time spent
in individual map, shuffle, reduce phases, compared to uncoded
transmission [7] and coded transmission without aggregation
([Prakash’18]) from [18]. It can be observed from Table I that
TACC decreases the overall execution time by 46% compared to
uncoded transmission and 41% compared to coded transmission
without aggregation.

Finally, we note that iterative algorithms have an additional
cost of communicating back the updated values of processed
nodes, i.e., R, back to the workers who are responsible for
mapping them. In our framework, this is done via multicasting
the nodes that are reduced by each worker to the corresponding
r workers who need the updated values for the next round. In
Table I, this additional time cost is included in the reduce time.
As also observed in our experiments, this cost is typically smaller
than the communication cost during the shuffle phase, as long
as r is relatively small compared to the total number of workers
K and the average node degree.

VI. CONCLUSION

We have proposed a topology-aware coding framework
(TACC) to address the communication bottleneck in distributed

Authorized licensed use limited to: University of Southern California. Downloaded on July 03,2020 at 22:20:34 UTC from IEEE Xplore. Restrictions apply.

GÜLER et al.: TACC: TOPOLOGY-AWARE CODED COMPUTING FOR DISTRIBUTED GRAPH PROCESSING 521

graph processing. TACC leverages the graph topology for stor-
age allocation, in that higher degree nodes are stored at a larger
fraction of workers. It then creates redundancy between the
parts of the graph allocated to different workers and aggregates
the intermediate computations to enable coded multicasting
opportunities. We analyze the performance gain of TACC both
theoretically and experimentally. Our results demonstrate that
TACC can achieve a significant speedup over the existing graph
processing frameworks.

This work is an initial step towards taking into account the
graph topology in coded computing, but the optimal solution
for the general problem is still open as the solution space is
highly complex. For instance, while creating redundant storage
for nodes assigned to one worker, say Worker 1, we partition
its assigned nodes into batches and make each batch redundant
by assigning it also to other workers. Then, the assignment of
a specific batch can be made by taking into account how well
connected nodes in the batch are to the nodes already assigned
to workers to which this batch will be assigned. For instance, if
for a given batch we have a choice of assigning it to Worker 2
or Worker 3, then, we would assign the batch to Worker 2 if the
nodes already stored at Worker 2 are more tightly connected to
the nodes in the batch, than the nodes stored at Worker 3, and
vice versa. This could in turn reduce the communication load
further. We plan to investigate this direction in our future work.

APPENDIX A
PROOF OF THEOREM 3

Consider the expected number of messages that needs to be
sent to worker k from the other workers. Since Worker k knows
the nodes in subgraph Mk and processes the outputs for the
nodes in Rk, from (20), as N →∞, we expect |Rk |

W = N
KW

nodes in Rk to admit a weight λi for i ∈ [K]. Next, we define
the following random variable,

Av =

{
1 if ∃(u, v) ∈ E , u ∈ V\Mk

0 otherwise
(40)

for each node v ∈ Rk. That is, Av = 1 if there exists an edge
from a node not mapped by Worker k to node v ∈ Rk. Hence,
Worker k needs to receive at least

∑
v∈Rk

Av distinct messages
from the remaining workers. Otherwise, Worker k will not be
able to distinguish the messages aimed for some of the nodes in
v ∈ Rk and will not be able to process them.

The total number of messages sent from all workers is at least
as large as the number of messages that needs to be sent from
[K]\{k} to Worker k. Therefore,

L∗(r)

≥ E[
∑

v∈Rk

Av] (41)

=
∑

v∈Rk

W∑

i=1

1

W
E[Av|wv = λi] (42)

=
∑

v∈Rk

W∑

i=1

1

W
P (Av = 1|wv = λi) (43)

=
∑

v∈Rk

W∑

i=1

1

W
(1− P (Av = 0|wv = λi)) (44)

=
∑

v∈Rk

W∑

i=1

1

W

(
1−

∏

u∈V\Mk

P ((u, v) /∈ E|wv = λi)

)
(45)

≥ N

KW

W∑

i=1

(
1−

Q∏

q=1

qW
Q∏

j=1+
(q−1)W

Q

×
(
1− λiλj

N
W

∑W
t=1 λt

) N
W (1− rq

K))
(46)

where (46) is from the fact that, as N →∞, each worker stores
Nrq
WK nodes with weight λ

1+
(q−1)W

Q
, . . . , λ qW

Q
, whereas the total

number of nodes with weight λj , j ∈ [W], is N
W .

APPENDIX B

For the first scenario, we obtain from (22) that,

μ1 =
N

KW

W∑

i=1

(
1−

W∏

j=1

(
1− λiλj

N
W

∑W
t=1 λt

) N
W (1− r

K))

=
N

K
− N

KW

W∑

i=1

∏W
j=1

(
1− λiλj

N
W

∑W
t=1 λt

) N
W

∏W
j=1

(
1− λiλj

N
W

∑W
t=1 λt

) Nr
WK

(47)

by setting Q =W in (22). Similarly, for the second scenario,
we use (22) to find that,

μ2 =
N

K
− N

KW

W∑

i=1

∏W
j=1

(
1− λiλj

N
W

∑W
t=1 λt

) N
W

∏W
j=1

(
1− λiλj

N
W

∑W
t=1 λt

)Nrj
WK

. (48)

From the denominator of (47), we then find that,

W∏

j=1

(
1− λiλj

N
W

∑W
t=1 λt

) Nr
WK

=

W∏

j=1

(
1− λiλj

N
W

∑W
t=1 λt

) N
WK (1

W

∑W
k=1 rk)

=

(
1− λiλ1

N
W

∑W
t=1 λt

) N
WK .

r1
W

. . .

(
1− λiλ1

N
W

∑W
t=1 λt

) N
WK .

rW
W

. . .

(
1− λiλW

N
W

∑W
t=1 λt

) N
WK .

r1
W

. . .

(
1− λiλW

N
W

∑W
t=1 λt

) N
WK .

rW
W

≥
(
1− λiλ1

N
W

∑W
t=1 λt

) N
WK .

r1
W

. . .

(
1− λiλW

N
W

∑W
t=1 λt

) N
WK .

rW
W

Authorized licensed use limited to: University of Southern California. Downloaded on July 03,2020 at 22:20:34 UTC from IEEE Xplore. Restrictions apply.

522 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 6, 2020

. . .

(
1− λiλ1

N
W

∑W
t=1 λt

) N
WK .

r1
W

. . .

(
1− λiλW

N
W

∑W
t=1 λt

) N
WK .

rW
W

(49)

=

W∏

j=1

(
1− λiλj

N
W

∑W
t=1 λt

)Nrj
WK

(50)

Equation (49) follows from the fact that,

(
1− λiλj

N
W

∑W
t=1 λt

) N
WK .

rk
W

(
1− λiλk

N
W

∑W
t=1 λt

) N
WK .

rj
W

≥
(
1− λiλj

N
W

∑W
t=1 λt

) N
WK .

rj
W

(
1− λiλk

N
W

∑W
t=1 λt

) N
WK .

rk
W

(51)

for any k, j ∈ [W], k �= j. To observe this, without loss of
generality, assume that k ≤ j and let βj � λiλj

N
W

∑W
t=1 λt

and βk �
λiλk

N
W

∑W
t=1 λt

. By definition, βk ≥ βj and rk ≥ rj , hence,

(1− βj)
N

WK .
rk
W (1− βk)

N
WK .

rj
W

= (1− βj)
N

WK .
rj
W (1− βk)

N
WK .

rk
W

(
1− βj
1− βk

) N
WK .

(rk−rj)
W

(52)

≥ (1− βj)
N

WK .
rj
W (1− βk)

N
WK .

rk
W . (53)

Equation (50) is equal to the denominator of (48). Since the
remaining terms are equal in both (47) and (48), it then follows
from (50) that μ1 ≥ μ2.

APPENDIX C
PROOF OF THEOREM 3

We prove this result by analyzing the expected communica-
tion load of the achievable scheme from Section III for gen-
eralized random graphs. We first note that coded multicasting
is performed within each group q ∈ [Q] independently. Within
group q, Worker k ∈ [K] is a member of

(
K−1
rq

)
subsets of size

rq + 1, and multicasts a coded message for each one of them.
Due to the symmetry in subgraph allocation, coding scheme,
and the weight assignment for the random graph, the expected
number of messages sent from each worker is equal. Then, one
can find the expected communication load of the distributed
system to be,

Q∑

q=1

K

(
K − 1

rq

)
E[Lq], (54)

whereE[Lq] is the expected communication load of each worker
for group q. In the following, we boundE[Lq] asN →∞. Con-
sider a group q ∈ [Q]. LetS ⊆ [K] be a subset of workers of size
rq + 1. Without loss of generality, let these rq + 1 workers be
S = {1, 2, . . . , rq, rq + 1}. Consider the coded message formed

by Worker rq + 1. Define a binary random variable Ykj ,

Ykj =

{
1 if ∃(i, j) ∈ E where i ∈Mq

S\{k}
0 otherwise

(55)

for j ∈ Rk and k ∈ [rq], where Mq
S\{k} =

⋂
k′∈S\{k}M

q
k′ .

Then, the number of aggregated messages to be sent by Worker
rq + 1 and needed by Worker k ∈ [rq] is,

Yk =
1

rq

∑

j∈Rk

Ykj . (56)

From the subgraph allocation phase in Algorithm 1, we observe
that Rk ∩Mq

S\{k} = ∅, hence the nodes reduced by Worker k
(nodes for which Worker k computes the output values for)
are disjoint from the nodes mapped exclusively by the subset
of workers S\{k}. Then, given the node weights, the edges
between the map nodes inMq

S\{k} and reduce nodes in Rk are
independent. Thus, random variables Ykj are independent for all
j ∈ Rk when conditioned on node weightsW1, . . . ,WN . From
(56), the total number of messages multicasted from Worker
rq + 1 to workers in [rq] is,

Lq = max
k=1,...,rq

Yk. (57)

Our asymptotic analysis utilizes the notion of strong typicality
from information theory.

Definition 5 (Strong Typicality, [50]): Consider the sequence
of random variables (W1, . . . ,WN) drawn i.i.d from the dis-
tribution in (20). Furthermore, let w = (w1, . . . , wN) denote a
realization of (W1, . . . ,WN). Define T N

ε as the set of sequences
w that satisfy,

W∑

t=1

∣∣∣∣
|{i : wi = λt}|

N
− p(λt)

∣∣∣∣ < ε (58)

where |{i : wi = λt}| is the number of occurrences of λt in
w. Then, T N

ε is called a strongly typical set, and sequences
w that satisfy (58) are called strongly ε-typical sequences.
From the Law of Large Numbers and strong AEP (Asymptotic
Equipartition Property), it follows that,

P{(W1, . . . ,WN) ∈ T N
ε } > 1− ε (59)

as N →∞ and ε→ 0.
Then, for a given sq > 0, we can bound the expected com-

munication load of Worker rq + 1 as:

esqrqE[Lq] (60)

≤ E[esqrqLq] (61)

= E[esqrq maxk=1,...,rq Yk] (62)

≤ E
[rq∑

k=1

esqrqYk

]
(63)

=

rq∑

k=1

E
[
esq

∑
j∈Rk

Ykj

]
(64)

=

rq∑

k=1

E

[∏

j∈Rk

esqYkj

]
(65)

Authorized licensed use limited to: University of Southern California. Downloaded on July 03,2020 at 22:20:34 UTC from IEEE Xplore. Restrictions apply.

GÜLER et al.: TACC: TOPOLOGY-AWARE CODED COMPUTING FOR DISTRIBUTED GRAPH PROCESSING 523

=

rq∑

k=1

E

[
E

[∏

j∈Rk

esqYkj |W1, . . . ,WN

]]
(66)

=

rq∑

k=1

E

[∏

j∈Rk

E[esqYkj |W1, . . . ,WN]
]

(67)

=

rq∑

k=1

E

[∏

j∈Rk

(P (Ykj = 0|W1, . . . ,WN)

+ esqP (Ykj = 1|W1, . . . ,WN))

]
(68)

=

rq∑

k=1

E

⎡

⎣
∏

j∈Rk

⎛

⎝
∏

i∈Mq
S\{k}

(
1− WiWj∑N

t=1Wt

)

+ esq

⎛

⎝ 1−
∏

i∈Mq
S\{k}

(
1− WiWj∑N

t=1Wt

)⎞

⎠

⎞

⎠

⎤

⎦ (69)

=

rq∑

k=1

∑

w∈T N
ε

p(w)× E

⎡

⎣
∏

j∈Rk

⎛

⎝
∏

i∈Mq
S\{k}

(
1− wiwj∑N

t=1 wt

)

+ esq

⎛

⎝ 1−
∏

i∈Mq
S\{k}

(
1− wiwj∑N

t=1 wt

)⎞

⎠

⎞

⎠

⎤

⎦

+

rq∑

k=1

∑

w/∈T N
ε

p(w)× E

⎡

⎣
∏

j∈Rk

⎛

⎝
∏

i∈Mq
S\{k}

(
1− wiwj∑N

t=1 wt

)

+ esq

⎛

⎝ 1−
∏

i∈Mq
S\{k}

(
1− wiwj∑N

t=1 wt

)⎞

⎠

⎞

⎠

⎤

⎦ (70)

<

rq∑

k=1

∑

w∈T N
ε

p(w)× E

⎡

⎣
∏

j∈Rk

⎛

⎝
∏

i∈Mq
S\{k}

(
1− wiwj∑N

t=1 wt

)

+ esq

⎛

⎝ 1−
∏

i∈Mq
S\{k}

(
1− wiwj∑N

t=1 wt

)⎞

⎠

⎞

⎠

⎤

⎦

+ ε rq max
w/∈T N

ε

E

⎡

⎣
∏

j∈Rk

⎛

⎝
∏

i∈Mq
S\{k}

(
1− wiwj∑N

t=1 wt

)

+ esq

⎛

⎝ 1−
∏

i∈Mq
S\{k}

(
1− wiwj∑N

t=1 wt

)⎞

⎠

⎞

⎠

⎤

⎦ (71)

=

rq∑

k=1

∑

w∈T N
ε

p(w)× E

⎡

⎣
∏

j∈Rk

⎛

⎝
∏

i∈Mq
S\{k}

(
1− wiwj∑N

t=1 wt

)

+ esq

⎛

⎝ 1−
∏

i∈Mq
S\{k}

(
1− wiwj∑N

t=1 wt

)⎞

⎠

⎞

⎠

⎤

⎦ (72)

as N →∞ and ε→ 0. Equation (61) follows from Jensen’s
inequality, (66) is from the law of iterated expectation; the outer
expectation defined over the node weights and random subgraph
partitioning whereas the inner expectation is defined over the
edge probabilities. Equation (67) holds since random variables

Ykj are independent when conditioned on the node weights,
equation (69) follows from (55) and Definition 3. Equation
(70) follows from the law of iterated expectation, in which the
inner expectation is defined over the random subgraph partitions,
where each worker is assigned to N

K nodes uniformly at random.
Next, we define,

nRk
w (m) = |{j ∈ Rk : wj = λm}|, m ∈ [W], (73)

n
Mq
S\{k}

w (m) = |{j ∈Mq
S\{k} : wj = λm}|, m ∈ [W], (74)

as the number of occurrences of weight λm in Rk, and in
Mq
S\{k}, respectively. It then follows from (72)–(74) that,

rq∑

k=1

∑

w∈T N
ε

p(w)× E

⎡

⎣
∏

j∈Rk

⎛

⎝
∏

i∈Mq
S\{k}

(
1− wiwj∑N

t=1 wt

)

+ esq

⎛

⎝ 1−
∏

i∈Mq
S\{k}

(
1− wiwj∑N

t=1 wt

)⎞

⎠

⎞

⎠

⎤

⎦

=

rq∑

k=1

∑

w∈T N
ε

p(w)× E

⎡

⎣
W∏

m=1

⎛

⎝ W∏

l=1

(
1− λmλl

N
W

∑W
t=1 λt

)n
Mq

S\{k}
w (l)

+ esq

⎛

⎝
1−

W∏

l=1

(
1− λmλl

N
W

∑W
t=1 λt

)n
Mq

S\{k}
w (l)

⎞

⎠

⎞

⎠

n
Rk
w (m)

⎤

⎥⎥⎦

(75)

=

rq∑

k=1

∑

w∈T N
ε

p(w)

W∏

m=1

⎛

⎜⎝

qW
Q∏

l=1+
(q−1)W

Q

(
1− λmλl

N
W

∑W
t=1 λt

) N

W(Krq)

+ esq

⎛

⎜⎝ 1−
qW
Q∏

l=1+
(q−1)W

Q

(
1− λmλl

N
W

∑W
t=1 λt

) N

W(Krq)

⎞

⎟⎠

⎞

⎟⎠

N
WK

(76)

=

rq∑

k=1

W∏

m=1

⎛

⎜⎝

qW
Q∏

l=1+
(q−1)W

Q

(
1− λmλl

N
W

∑W
t=1 λt

) N

W(Krq)

+ esq

⎛

⎜⎝ 1−

qW
Q∏

l=1+
(q−1)W

Q

(
1− λmλl

N
W

∑W
t=1 λt

) N

W(Krq)

⎞

⎟⎠

⎞

⎟⎠

N
WK

(77)

= rq

W∏

m=1

⎛

⎜⎝

qW
Q∏

l=1+
(q−1)W

Q

(
1− λmλl

N
W

∑W
t=1 λt

) N

W(Krq)

+ esq

⎛

⎜⎝ 1−

qW
Q∏

l=1+
(q−1)W

Q

(
1− λmλl

N
W

∑W
t=1 λt

) N

W(Krq)

⎞

⎟⎠

⎞

⎟⎠

N
WK

(78)

where (76) is due to the random weight assignment for the
generalized random graph described in (20) and the typicality

Authorized licensed use limited to: University of Southern California. Downloaded on July 03,2020 at 22:20:34 UTC from IEEE Xplore. Restrictions apply.

524 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 6, 2020

argument from (59), asN →∞, out of N nodes in the graph, a
fraction of 1

W nodes have weight λm, m ∈ [W]. During the
subgraph allocation phase, Worker k is assigned to |Rk| =
N
K nodes. From the random partitioning setup described in
Section III, N

WK nodes withinRk will have weight (and average
degree) λm. The nodes in Rk are sorted according to their
degrees and divided into Q groups, in which group q has N

QK

nodes. As W
Q ∈ Z, group q consists of the nodes with degree λl

for l = 1 + (q−1)W
Q , . . . , qWQ .

For each worker, the N
QK nodes in group q are divided

randomly into
(
K−1
rq−1

)
parts where each part is stored at a dis-

tinct subset of rq − 1 other workers. Accordingly, each part
has 1

(K−1
rq−1)

N
W
Q QK

= 1

(K−1
rq−1)

N
WK nodes with degree λl for l =

1 + (q−1)W
Q , . . . , qWQ . As a result, each subset of rq workers will

exclusively store rq

(K−1
rq−1)

N
WK = N

W(K
rq)

nodes with degree λl, l =

1 + (q−1)W
Q , . . . , qWQ . Lastly, (76) holds since

∑
w∈T N

ε
p(w)→

1 as N, ε→∞ from (59). By combining (60) with (78) and
taking the logarithm of both sides,

E[Lq] ≤
1

sqrq

(
ln(rq) +

W∑

m=1

N

WK

ln

⎛

⎜⎝

qW
Q∏

l=1+
(q−1)W

Q

(
1− λmλl

N
W

∑W
t=1 λt

) N

W(Krq)

+ esq

⎛

⎜⎝1−

qW
Q∏

l=1+
(q−1)W

Q

(
1− λmλl

N
W

∑W
t=1 λt

) N

W(Krq)

⎞

⎟⎠

⎞

⎟⎠

⎞

⎟⎠ ,

which, along with (54), leads to (24).

REFERENCES

[1] B. Guler, A. S. Avestimehr, and A. Ortega, “A topology-aware coding
framework for distributed graph processing,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process., 2019, pp. 8182–8186.

[2] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” Comp. Net. Integr. Services Digit. Netw. Syst., vol. 30,
pp. 107–117, 1998.

[3] A. Ortega, P. Frossard, J. Kovačević, J. M. Moura, and P. Vandergheynst,
“Graph signal processing: Overview, challenges, and applications,” Proc.
IEEE, vol. 106, no. 5, pp. 808–828, May 2018.

[4] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,
“The emerging field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other irregular domains,” IEEE
Signal Proc. Mag., vol. 30, no. 3, pp. 83–98, May 2013.

[5] A. Sandryhaila and J. M. Moura, “Discrete signal processing on graphs,”
IEEE Trans. Signal Process., vol. 61, no. 7, pp. 1644–1656, Apr.
2013.

[6] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Proc. Adv.
Neural Inf. Process. Syst., 2016, pp. 3844–3852.

[7] G. Malewicz et al., “Pregel: A system for large-scale graph processing,”
in Proc. ACM Int. Conf. Manage. Data, 2010, pp. 135–146.

[8] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Heller-
stein, “Distributed GraphLab: A framework for machine learning and data
mining in the cloud,” VLDB Endownment, vol. 5, no. 8, pp. 716–727, 2012.

[9] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[10] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry, “Challenges
in parallel graph processing,” Parallel Proc. Lett., vol. 17, pp. 5–20,
2007.

[11] R. Chen, X. Ding, P. Wang, H. Chen, B. Zang, and H. Guan, “Computation
and communication efficient graph processing with distributed immutable
view,” in Proc. Int. Symp. High-Perform. Parallel Distrib. Comput., 2014,
pp. 215–226.

[12] B. Hendrickson and T. G. Kolda, “Graph partitioning models for parallel
computing,” Parallel Comput., vol. 26, no. 12, pp. 1519–1534, 2000.

[13] M. Fiedler, “A property of eigenvectors of nonnegative symmetric matrices
and its application to graph theory,” Czechoslovak Math. J., vol. 25, no. 4,
pp. 619–633, 1975.

[14] H. D. Simon, “Partitioning of unstructured problems for parallel process-
ing,” Comput. Syst. Eng., vol. 2, no. 2, pp. 135–148, 1991.

[15] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for
partitioning irregular graphs,” SIAM J. Scientific Comput., vol. 20, no. 1,
pp. 359–392, 1998.

[16] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz, “Recent
advances in graph partitioning,” in Proc. Algorithm Eng., 2016, pp. 117–
158.

[17] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A funda-
mental tradeoff between computation and communication in distributed
computing,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 109–128,
Jan. 2018.

[18] S. Prakash, A. Reisizadeh, R. Pedarsani, and S. Avestimehr, “Coded
computing for distributed graph analytics,” in Proc. IEEE Int. Symp. Inf.
Theory, 2018, pp. 1221–1225.

[19] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Compressed coded
distributed computing,” in Proc. IEEE Int. Symp. Inf. Theory, 2018, pp.
2032–2036.

[20] A. Clauset, C. R. Shalizi, and M. E. Newman, “Power-law distributions in
empirical data,” SIAM Rev., vol. 51, no. 4, pp. 661–703, 2009.

[21] F. Chung and L. Lu, “The average distances in random graphs with given
expected degrees,” Nat. Academy Sci., vol. 99, no. 25, pp. 15 879–15 882,
2002.

[22] F. Chung and L. Lu, “Connected components in random graphs with given
expected degree sequences,” Ann. Combinatorics, vol. 6, pp. 125–145,
2002.

[23] T. Britton, M. Deijfen, and A. Martin-Löf, “Generating simple random
graphs with prescribed degree distribution,” J. Statist. Phys., vol. 124,
no. 6, pp. 1377–1397, 2006.

[24] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network dataset
collection,” 2014. [Online]. Available: http://snap.stanford.edu/data

[25] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans. Inf.
Theory, vol. 64, no. 3, pp. 1514–1529, Mar. 2018.

[26] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear
transforms distributedly using coded short dot products,” in Proc. Adv.
Neural Inf. Process. Syst., 2016, pp. 2100–2108.

[27] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: An optimal
design for high-dimensional coded matrix multiplication,” in Proc. Adv.
Neural Inf. Process. Syst., 2017, pp. 4406–4416.

[28] Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and A. S.
Avestimehr, “Lagrange coded computing: Optimal design for resiliency,
security and privacy,” in Proc. Int. Conf. Artif. Intell. Statist., Naha,
Okinawa, Japan, vol. 89, 2019, pp. 1215–1225.

[29] C. Karakus, Y. Sun, S. Diggavi, and W. Yin, “Straggler mitigation in
distributed optimization through data encoding,” in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 5434–5442.

[30] C. Karakus, Y. Sun, and S. Diggavi, “Encoded distributed optimization,”
in Proc. IEEE Int. Symp. Inf. Theory, 2017, pp. 2890–2894.

[31] C. Karakus, Y. Sun, S. N. Diggavi, and W. Yin, “Redundancy techniques
for straggler mitigation in distributed optimization and learning.” J. Mach.
Learn. Res., vol. 20, no. 72, pp. 1–47, 2019.

[32] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in Proc. Int. Conf.
Mach. Learn., 2017, pp. 3368–3376.

[33] Y. Yang, P. Grover, and S. Kar, “Coded distributed computing for inverse
problems,” in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 709–719.

[34] A. Mallick and G. Joshi, “Rateless codes for distributed computations with
sparse compressed matrices,” in Proc. IEEE Int. Symp. Inf. Theory, 2019,
pp. 2793–2797.

[35] A. Mallick, M. Chaudhari, and G. Joshi, “Fast and efficient distributed
matrix-vector multiplication using rateless fountain codes,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process., 2019, pp. 8192–8196.

Authorized licensed use limited to: University of Southern California. Downloaded on July 03,2020 at 22:20:34 UTC from IEEE Xplore. Restrictions apply.

http://snap.stanford.edu/data

GÜLER et al.: TACC: TOPOLOGY-AWARE CODED COMPUTING FOR DISTRIBUTED GRAPH PROCESSING 525

[36] A. Severinson, A. G. i Amat, and E. Rosnes, “Block-diagonal and lt codes
for distributed computing with straggling servers,” IEEE Trans. Commun.,
vol. 67, no. 3, pp. 1739–1753, Mar. 2019.

[37] M. A. Maddah-Ali and U. Niesen, “Decentralized coded caching attains
order-optimal memory-rate tradeoff,” IEEE/ACM Trans. Netw., vol. 23,
no. 4, pp. 1029–1040, Aug. 2015.

[38] M. M. Amiri and D. Gündüz, “Fundamental limits of coded caching:
Improved delivery rate-cache capacity tradeoff,” IEEE Trans. Commun.,
vol. 65, no. 2, pp. 806–815, Feb. 2017.

[39] M. Ji, A. M. Tulino, J. Llorca, and G. Caire, “Order-optimal rate of caching
and coded multicasting with random demands,” IEEE Trans. Inf. Theory,
vol. 63, no. 6, pp. 3923–3949, Jun. 2017.

[40] A. M. Ibrahim, A. A. Zewail, and A. Yener, “Coded caching for hetero-
geneous systems: An optimization perspective,” IEEE Trans. Commun.,
vol. 67, no. 8, pp. 5321–5335, Aug. 2019.

[41] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Trans. Neural Netw., vol. 20,
no. 1, pp. 61–80, Jan. 2009.

[42] G. Karypis and V. Kumar, “Metis–unstructured graph partitioning and
sparse matrix ordering system, version 2.0,” 1995.

[43] S. Prakash, A. Reisizadeh, R. Pedarsani, and S. Avestimehr, “Coded
computing for distributed graph analytics,” 2018, arXiv:1801.05522.

[44] P. Erdös and A. Rényi, “On random graphs, i,” Publicationes Mathemati-
cae (Debrecen), vol. 6, pp. 290–297, 1959.

[45] E. N. Gilbert, “Random graphs,” Ann. Math. Statist., vol. 30, no. 4,
pp. 1141–1144, 1959.

[46] R. Albert and A.-L. Barabási, “Statistical mechanics of complex net-
works,” Rev. Modern Phys., vol. 74-1, pp. 47–97, 2002.

[47] J. Riley, “StarCluster-numPy/SciPy computing on Amazon’s elastic com-
pute cloud (EC2),” in Proc. 9th Python Sci. Conf., 2010. [Online]. Avail-
able: http://star.mit.edu/cluster/index.html.

[48] L. Dalcín, R. Paz, and M. Storti, “MPI for python,” J. Parallel and Distrib.
Comput., vol. 65, no. 9, pp. 1108–1115, 2005.

[49] K. Konstantinidis and A. Ramamoorthy, “Leveraging coding techniques
for speeding up distributed computing,” in Proc. IEEE Global Commun.
Conf., Abu Dhabi, United Arab Emirates, 2018, pp. 1–6.

[50] T. M. Cover and J. A. Thomas, Elements of Information Theory. Hoboken,
NJ, USA: Wiley, 2012.

Başak Güler (Member, IEEE) received the B.Sc.
degree in electrical and electronics engineering from
Middle East Technical University (METU), Ankara,
Turkey, in 2009 and the M.Sc. and Ph.D. degrees
in electrical engineering from Wireless Communica-
tions and Networking Laboratory, Pennsylvania State
University, University Park, PA, in 2012 and 2017,
respectively. She is currently a Postdoctoral Scholar at
the Department of Electrical Engineering, University
of Southern California. Her research interests include
distributed computing, graph processing, machine

learning, source coding, and interference management in heterogeneous wireless
networks.

A. Salman Avestimehr (Fellow, IEEE) received the
B.S. degree in electrical engineering from the Sharif
University of Technology, in 2003 and the M.S. and
Ph.D. degree in electrical engineering and computer
science from the University of California, Berkeley,
in 2005 and 2008, respectively. He is a Professor
and director of the Information Theory and Machine
Learning (vITAL) research lab at the Electrical and
Computer Engineering Department of University of-
Southern California. His research interests include
information theory, coding theory, and large-scale

distributed computing and machine learning.
Dr. Avestimehr has received a number of awards for his research, including the

James L. Massey Research & Teaching Award from IEEE Information Theory
Society, an Information Theory Society and Communication Society Joint
Paper Award, a Presidential Early Career Award for Scientists and Engineers
(PECASE) from the White House, a Young Investigator Program (YIP) award
from the U. S. Air Force Office of Scientific Research, a National Science Foun-
dation CAREER award, the David J. Sakrison Memorial Prize, and several Best
Paper Awards at Conferences. He is a Fellow of IEEE. He has been an Associate
Editor for IEEE TRANSACTIONS ON INFORMATION THEORY. He is currently a
general Co-Chair of the 2020 International Symposium on Information Theory
(ISIT).

Antonio Ortega (Fellow, IEEE) received the
Telecommunications Engineering degree from the
Universidad Politecnica de Madrid, Madrid, Spain, in
1989 and the Ph.D. degree in electrical engineering
from Columbia University, New York, NY, in 1994. In
1994 he joined the Electrical Engineering department
at the University of Southern California (USC), where
he is currently a Professor and has served as Associate
Chair. He is a Fellow of the IEEE and EURASIP, and
a member of ACM and APSIPA and has served as
a member of the Board of Governors of the IEEE

Signal Processing Society. He was Technical Program Co-Chair of ICIP 2008,
PCS 2013, PCS 2018 and DSW 2018. He was the Inaugural Editor-in-Chief of
the APSIPA Transactions on Signal and Information Processing and is now
Editor-in-Chief of the IEEE TRANSACTIONS ON SIGNAL AND INFORMATION

PROCESSING OVER NETWORKS. He has received several paper awards, including
most recently the 2016 Signal Processing Magazine award, and was a Plenary
Speaker at ICIP 2013. His recent research work is focusing on graph signal
processing, machine learning, multimedia compression and wireless sensor
networks. Over 40 PhD students have completed their PhD thesis under his
supervision at USC and his work has led to over 400 publications in international
conferences and journals, as well as several patents.

Authorized licensed use limited to: University of Southern California. Downloaded on July 03,2020 at 22:20:34 UTC from IEEE Xplore. Restrictions apply.

http://star.mit.edu/cluster/index.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

