
360 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 9, NO. 2, MARCH 2015

Using Social Sensors for Influence Propagation in
Networks With Positive and Negative Relationships

Basak Guler, Student Member, IEEE, Burak Varan, Student Member, IEEE,
Kaya Tutuncuoglu, Student Member, IEEE, Mohamed Nafea, Student Member, IEEE,

Ahmed A. Zewail, Student Member, IEEE, Aylin Yener, Fellow, IEEE, and Damien Octeau

Abstract—Online social communities often exhibit complex
relationship structures, ranging from close friends to political
rivals. As a result, persons are influenced by their friends and
foes differently. Future network applications can benefit from
integrating these structural differences in propagation schemes
through socially aware sensors. In this paper, we introduce a
propagation model for such social sensor networks with positive
and negative relationship types. We tackle two main scenarios
based on this model. The first one is to minimize the end-to-end
propagation cost of influencing a target person in favor of an idea
by utilizing sensor observations about the relationship types in
the underlying social graph. The propagation cost is incurred by
social and physical network dynamics such as propagation delay,
frequency of interaction, the strength of friendship/foe ties or
the impact factor of the propagating idea. We next extend this
problem by incorporating the impact of message deterioration
and ignorance, and by limiting the number of persons influenced
against the idea before reaching the target. Second, we study the
propagation problem while minimizing the number of negatively
influenced persons on the path, and provide extensions to elaborate
on the impact of network parameters. We demonstrate our results
in both an artificially created network and the Epinions signed
network topology. Our results show that judicious propagation
schemes lead to a significant reduction in the average cost and
complexity of network propagation compared to naïve myopic
algorithms.

Index Terms—Network propagation for social media, recom-
mender systems, signed networks, social networks, socially aware
physical systems.
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I. INTRODUCTION

S OCIAL media has become the primary platform for the
spread of information, due to the recent proliferation of

smart mobile phones, tablets and computers [1]. Social relation-
ships and their impact on information flow [2] have been studied
in various works, such as connecting people with trust scores
[3], identifying the users that maximize the spread of influence
[4], or utilizing social relationships in software design for as-
sisting recommender systems [5].
Relationship types in online social groups range from

like-minded friends to ideological foes. In contrast, conven-
tional social network analysis often treats all relations as
friendly. Accordingly, various works have recently emphasized
the importance of integrating multiple relationship types in
social networks [6]–[10]. Identifying positive and negative rela-
tionship types in human communities dates back to balance and
status theories in social psychology [11], [12], which provide a
graph-theoretic characterization of balanced structures in social
communities. Signed links are also utilized in social media
to represent the positive and negative relationships in human
interactions [13], in which the evolution of the link structures is
studied to explore the underlying tendencies of user behavior.
Predicting positive and negative relationships in online network
data is considered in [14] from a machine-learning framework,
in which certain consistencies are observed in the relationship
patterns. Key seeds are identified in a signed network for
short and long term influence maximization in [9] through
random diffusion of information [15]. Reference [10] studies
community detection in a signed social network. Bluetooth-en-
abled mobile phones are used in [16] as wearable sensors for
measuring information access to infer social patterns and rela-
tionships between persons using proximity, time, and location
data. Human interactions are inspected in [17] through social
sensors that can detect conversational dynamics automatically.
Their real-time speech extracting capability can detect social
signals like interest and excitement and capture the amount of
influence one person has on another [18]. Recent studies also
point out effective directions for turning an unsigned network
to a signed one by predicting the positive and negative social
ties [19]–[21]. We presume that the relationship type between
two persons can be identified by extracting information from
various interaction forms such as shared messages, photos
and videos. An ideological ally or a foe can be identified by
learning one's own ideological standing from the shared or
favored media content.
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Fig. 1. Signed links in a signed social network.

In this paper, we study a signed social network in which re-
lationships are modeled by positive or negative signs as illus-
trated in Fig. 1. A positive sign refers to a like-minded neighbor
whereas a negative sign represents a neighbor with an opposite
world view. We propose to utilize socially aware sensors, which
can gather and process data available in social media, for the
prediction of friendship versus antagonistic relationship types.
Link prediction can be achieved through various data types,
such as textual data obtained from the posts and comments in
online communities, visual data from the photos shared in a so-
cial event, or audio recordings of social conversations [22], [23].
Incorporating social sensors is essential in the design of network
propagation schemes that are aware of, learn from and adapt
to the structural differences in human relations. Context-aware
wireless sensors are used in [24] from mobile phones with ac-
cess to online published content and create social links.Wireless
social sensors are utilized in [25] to understand social behaviors
and detect the collective behavior patterns on bird communities.
A novel application is introduced in [26] for using classifiers
that execute partly on sensor-enabled mobile phones and partly
on backend servers to construct a personal sensing system.
Our methods are based on the property that individuals are

influenced by their friends and foes differently [27], which is
known as the principle of homophily [28]. In particular, per-
sons tend to agree with others who are ideologically similar,
and oppose to the ideas that come from their ideological foes
[29]. As an example, consider an online voting process between
two candidates (candidate and candidate ) with opposite
world views. Concurrently, a recommender in social media is
suggesting one of the two candidates to the individuals based
on the preceding votes and friendship structures. Assume that
such a person, Alice, has two neighbors Bob and Eve. Bob has
the same world interpretation with Alice, in other words is an
ideological ally, whereas Eve has an opposite world view. The
recommender, who can observe the individual votes, makes sug-
gestions of type “Bob supports candidate , do you want to
vote for , too?” Suppose that both Bob and Eve are known by

the recommender to support candidate , and that this informa-
tion is still unknown to Alice. The recommender can then make
one of the two suggestions to Alice, “Bob supports candidate
, do you want to vote for , too?” or “Eve supports candidate
, do you want to vote for , too?”. In case the first sugges-

tion is made, Alice is likely to support candidate as Bob is
an ideological ally. On the other hand, if Alice sees that Eve
supports candidate as in the latter, she will have a negative
opinion about the candidate as she considers Eve as an ideolog-
ical foe. In effect, the two different recommendations have the
possibility of influencing Alice in two opposite directions. To
this end, it is essential for the recommendation system to make
judicious suggestions by taking into account the interpersonal
relationship types.
We posit that persons take sides in favor of or against an idea,

product, candidate, or opinion, based on the information made
available to them [30]. While an idea is propagating through
the network, one has a tendency to like it if it is supported by
a like-minded friend, one that is ideologically similar or shares
similar interests. On the other hand, a negative relationship or
an antagonistic world view may cause one to act with caution
to the idea promoted by the neighbor. The interesting case oc-
curs when a neighbor with an opposite world view is against
an idea. In such a situation, one has a tendency to go against
the neighbor, which results in a positive disposition towards the
original idea. While this may appear far-fetched at first glance,
it fits well with many observations on various occasions, in-
cluding the historical details of the European alliances before
World War I [31], [32].
Modern applications of our work involve situations that arise

out of differing ideas, interpretation of situations, acts, groups,
events, or activities, that are led by social media. These include
promoting a candidate in a voting process, civil unrest events,
conflicts between pro and anti-government groups, recurring in-
cidents of radical acts such as terrorism and violence, or simply
rooting for/against a product, sports team etc. The biases of in-
dividuals are often observed through the posts shared or pages
liked enabled by the growing use of social media. Persons whose
tendencies are in disagreement can be represented by a negative
link, whereas persons with similar tendencies can be considered
to have a positive link. The posts from a large number of social
sensors often go through a filtering process in modern appli-
cations before making their way to our newsfeed, or the sug-
gestions section. The central entity who performs the filtering
process can control whose posts, acts, or choices are prioritized.
Judicious selection of these posts can in turn affect the align-
ment of a target entity towards a particular act, such as a partic-
ular candidate in a voting process, a particular action in a civil
event, or to a certain opinion about a situation.
We presume that a social link incurs a cost of propagation,

which incorporates a number of social and physical factors such
as the propagation delay, interaction frequency, friendship/foe
tie strength, or the power of the propagating idea. In doing so,
we establish the optimal policies through a policy-free measure-
ment metric. The right metric is often a weighted combination
of multiple social and physical conditions and depends on the
specific network goal. To this end, it is required to integrate
the intended performance metric with a sensor network capable
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of providing accurate information in a timely manner. As an
example, one physical metric we address in this study is the
end-to-end delay, which is important for providing the fastest
network experience to the user. As such, we study minimizing
the end-to-end propagation cost to influence a target node in
favor of an idea. This represents the fastest policy that influences
a target node positively when the cost metric is the propagation
delay. The network provider can then accompany these policies
with routing schemes with different design goals as required.
We expect our study to be useful for network applications in
which social relationships cause a significant impact on influ-
ence structures.
The proposed scheme applies, including but not limited to,

situations open to interpretation, as well as conflicts and crises,
the management of which requires a high level of situational
awareness. Effectively, such events strongly indicate the need
for designing intelligent systems for achieving situational
awareness, in which leveraging influence structures in network
propagation schemes takes a significant part.
The remainder of the paper is organized as follows: In

Section II, we introduce the system model. We present the
influence propagation scheme in Section III. We extend the
propagation model to account for message deterioration and ig-
norance in Section IV. Section V investigates how to control the
number of negatively influenced users. We elaborate on mini-
mizing the negative influence in Section VI. Sections VII and
VIII generalize the propagation schemes to cyclic graphs.
Numerical results are given in Section IX. We conclude the
paper in Section X.

II. SOCIAL NETWORK MODEL

In this section, we represent the social network with a directed
acyclic graph with nodes. A directed edge
exists between nodes and if . The tuple
represents the coordinates of a node . In the sequel, we
refer to a node by its index and its coordinates interchangeably.
The edge is labeled with a sign that stands
for the relationship type between and , which reflects the
attitude of one person towards another.
Initially, the source node is activated by an external cue

such as a news article, an event, an advertising campaign or a
political discussion. This node then passes the information to
its neighbor which results in a positive or negative influence.
The propagation continues until the message reaches the target
node. This model can alternatively be used to characterize a
recommendation network, in which a recommender makes
suggestions to subscribed users, based on the previous choices
of their neighbors. Therefore, a person is likely to be positively
influenced by the recommender if the previous neighbor is a
friend and is supporting the idea (candidate, product), whereas
if the previous contact is an enemy, the person is likely to
oppose the idea (candidate, product). Optimal propagation
policies with such social structures necessitate the utilization
of socially aware sensor networks that have the ability to
predict relationship types and make judicious decisions. Unlike
conventional routing schemes, these sensors should be able
to gather and process both social data measurements such as
neighbors with a friendship relation versus ideological foes and

physical measurements such as the frequency of interaction or
the strength of the propagation channel between the neighbors.
The cost of influence propagation between two nodes is ex-

pressed by a nonnegative weight. An example is the propa-
gation delay which captures both social and physical environ-
mental factors. From a physical perspective, it assesses the QoS
(quality of service) of multi-hop sensor networks, which de-
pends on various quantities such as the bandwidth, load, and
physical distance between the travelled links. From a social
perspective, it quantifies the impact of one person's actions on
influencing another person, in which a smaller delay refers to
a quicker response. From yet another perspective, the delay
may represent the frequency of interaction between the two per-
sons/sensors.
We focus on a social network with possibly asymmetric con-

nectivities (acquaintances), in which establishing a direct link
to the destination can be less than prevalent, and at times this
may not be an option. For example, the destination could be a
public figure known or followed by a large community such as a
politician or an author. We note, however, that the incentives for
propagating an idea will be different for various scenarios, and
in case the source can connect directly to the destination with
little effort, it may be beneficial to do so. We provide a formal
definition of the influence propagation problem in the sequel.

III. SOCIALLY CONSTRAINED MINIMUM-COST PROPAGATION
Our focus in this section is on influence propagation with

minimum expected end-to-end cost. We represent the source
and destination nodes with and , respectively. Our aim is
to determine the path and policy with minimum total cost for
positively influencing the destination (target person). The prop-
agation cost from to is given by . The sign of the
influence between and is given by . We represent the
set of all possible paths from the source to the destination by .
Then the minimum-cost positive influence propagation problem
is given by:

(1)

in which the objective function represents the total cost of path
. The multiplicative constraint guarantees that the target node

is positively influenced. Note that (1) is a dynamic program that
can be solved with backward induction. We label the node in-
dices in such a way that for every edge , , by
noting that such an ordering is feasible for any directed acyclic
graph [33].
We posit that the cost can be utilized to model the de-

gree of alignment, namely positivity or negativity, between two
persons. For instance, consider a system in which the cost
is the delay between initiating an action and its neighbor
reacting to it. If two persons are strongly aligned, either posi-
tive or negative, one would expect the reaction time to be low,
whereas it may take longer to draw a neighbor's attention who is
only weakly aligned, as it may require multiple initiatives, mes-
sages, posts, or tweets.
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Algorithm 1 Backward Induction Dynamic Programming for
Minimum-Cost Influence Propagation

1. Initialize and for every link .
2. Set the boundary conditions from (4) and (5).
3. Starting from the destination node , update the value
functions at each node using

4. Calculate the minimum end-to-end cost upon
reaching the source node .
5. Starting from , determine the optimal decisions ,

recursively.
6. Determine the optimal path using .

The arguments of the problem are the node label and
the parity variable . The case indicates that
the parity from node to the destination node is even, i.e., the
product of the signs from to the destination is equal to .
Similarly, refers to an odd parity, i.e., the product of the
signs from to the destination is given by . Optimal value
function quantifies the minimum total cost of the op-
timal path from node to the destination. The optimal policy
function defines the optimal decision taken at which
specifies the index of the node to be chosen next. The relations
for the even and odd parity paths from node to the destination
are given as follows:

(2)

(3)

in which is the even and is the odd parity path.
The delta function is given by and for
all . is the minimum total cost for influencing
the target (destination) node positively. Lastly, we state the
boundary conditions as follows:

(4)
(5)

The pseudo code of the backward induction algorithm that
solves (1) is given in Algorithm 1.

IV. PROPAGATION IN THE PRESENCE OF MESSAGE
DETERIORATION AND IGNORANCE

A propagating idea often distorts as it is repeated, which is
known as the “Telephone” effect [34]. As such, individual inter-
pretations or subjective priority assessments may alter the con-
tent of the message, news, or an idea, propagating in the social
network.

We now elaborate on how to quantify the impact of message
freshness on influence propagation, by allowing the nodes to
ignore an incoming message based on the strength of the link
and message freshness. If a node ignores a message, the recom-
mender has to refresh the message to reactivate the node with
an additional cost, which can be achieved by an advertisement
or a promotion. The recommender can also activate a node with
a cost even if it is not ignored, solely for refreshing the mes-
sage. Our problem is now to determine the optimal path with
minimum expected cost and the activation sequence, which cor-
responds to the set of nodes to activate even in the case of no
ignorance. We note that if a node ignores a message, which may
or may not happen, reactivation is necessary.
In order to reflect the impact of message deterioration and ig-

norance on network propagation, we incorporate message fresh-
ness and the possibility that persons may choose to ignore each
other. Specifically, we represent message freshness by the age
of a message, , which is the number of nodes the message has
passed through since the last activation. An activation sets the
message age to 1. It is required if a node ignores its neighbor. In
this case, the cost of activating node is . In case the message
is not ignored, the recommender may still choose to activate a
node to reset the age to 1 and increase the impact of the message;
however, there is a cost for activating node . The maximum
message age is which, when exceeded, requires the next node
on the path to be activated.
We denote the cost from node to node for a message of

age by the random variable . The tendency of
ignoring a message increases at each node as the message age
increases. The probability that node will ignore node , when
a message of age is conveyed from to , is given by

.
The ignorance probability can be used to define the de-

gree of connectivity between two persons. An intermittent con-
nection or a weak tie can be represented by a large , whereas
smaller values can be used for stronger ties.
We presume that the nodes know the message age, which

could be included in the message when necessary, in all other
applications it can be set to 1. It could also measure how much
the message loses its effectiveness, as it passes through hops.
For example, in the first hop, the person could be very eager
about the message, but when it passes through other nodes, it
may lose some of its content, quality, and the remaining persons
may lose their interest in it accordingly.
The minimum expected cost can be determined as the solu-

tion of the following problem:

(6)
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Algorithm 2 Minimum-Cost Influence Propagation in the
Presence of Message Deterioration and Ignorance

1. Initialize and for each message age
for every .

2. Assign the boundary conditions from

3. Going backwards from the destination , find the value
functions at each from

4. When the source node is reached, calculate the minimum
cost .
5. Determine the optimal decisions starting from the source.
6. Find the optimal path through the optimal decisions.

in which we optimize over the path and the activation se-
quence which is 1 if node decides to activate node
and 0 otherwise. We use dynamic programming to solve (6).
The recursive equations for backward induction are given as:

(7)

where and , and denotes the value func-
tion at with message age and disparity

. The boundary conditions are:

(8)

Finally, the answer for the minimum expected cost is
. Algorithm 2 provides the steps of the proposed

method.

V. LIMITING THE NUMBER OF NEGATIVE INFLUENCES
The propagation schemes proposed in the previous sections

focused on influencing a target node positively without taking
into account the dispositions of the intermediate nodes. How-
ever, real-life scenarios often require avoiding the situations in
which a large number of intermediate nodes are influenced neg-
atively. Accordingly, we consider in this section the problem
of how to influence a target node positively while limiting the
number of negatively influenced intermediate nodes.
We provide a forward induction dynamic programming al-

gorithm to quantify the influence from the source node to the
intermediate nodes. We denote as the fragment of the path

Algorithm 3 Forward Induction Dynamic Programming for
Limiting the Number of Negative Influences

1. Initialize the sign and cost of every edge.
2. Assign the boundary conditions from

3. Starting from the source node , update the value functions
at each node via

4. Calculate the minimum end-to-end cost upon
reaching the destination .
5. Determine the optimal path from the optimal decisions.

that ends at node . In other words, is a path from to
with the condition that if , then . The
problem can be formally stated as follows:

(9)

in which is the maximum allowed number of negatively in-
fluenced intermediate nodes. We consider deterministic costs.
We let denote the value of the minimum-cost even-

parity path connecting with when the number of negatively
influenced intermediate users are no more than .
stands for the minimum-cost for the odd-parity path between
and with at most negatively influenced intermediate users.
The recursive relations for the even and odd parity paths at each
node are then given by:

(10)

(11)

for and . The boundary conditions are given
as follows:

(12)

The minimum cost to influence the destination positively, with
the condition that no more than intermediate nodes are af-
fected negatively, is then given by . The steps of the
forward induction dynamic program is given in Algorithm 3.
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Algorithm 4 Minimize the Total Number of Negatively
Influenced Persons

1. Define the positive and negative relationships.
2. Set the boundary conditions from

3. Start from the source node and update the value functions
at each node according to

4. The total minimum number of negatively influenced persons
on the path is .
5. The optimal path can be determined from the optimal
decisions.

VI. MINIMIZING THE NUMBER OF NEGATIVE INFLUENCES
In this section, we study the problem of minimizing the

number of negatively influenced users subject to a maximum
number of hops allowed before reaching the target node. We
state this problem as follows:

(13)

We denote as the number of negatively influenced
users through the even-parity path between and where no
more than hops are used to reach . We denote
as the number of negatively influenced users through the odd-
parity path between and with at most hops from to .
The recursive relations for the even and odd parity paths are

given as follows:

(14)

(15)

where and . The maximum number of hops
allowed to reach the destination is . The boundary conditions
for this problem can be defined as follows:

(16)
The solution is given by , which refers to the even-
parity path with the minimum number of negatively influenced
users upon reaching the destination with no more than hops.
The steps of the forward induction dynamic program to find

Algorithm 5 Minimum-Cost Propagation with Positive
Influence for Cyclic Graphs

1. Initialize the sets , .
2. Assign the permanent labels of the source node
as and .

3. Set the temporary labels of remaining nodes by:
if
o.w.
if
o.w.

where an infinite cost is used whenever no edge exists
between nodes and .

4. Find a node such that:

5. if

6. else

7. if
STOP

else
8. Update the temporary labels :
9. if
10. if

11. else if

12. else
13. if

14. else if

15. Go to Step 4.

the optimal path for influencing a target node positively while
minimizing the number of negatively influenced persons on the
path is given in Algorithm 4.

VII. MINIMUM-COST INFLUENCE PROPAGATION
FOR GRAPHS WITH CYCLES

We consider in this section the minimum-cost influence prop-
agation problem from (1) for directed cyclic graphs. We note
that the methods introduced in Section III cannot be applied
to solve (1) directly, since the graphs we study in this section
may involve directed cycles. Therefore, we propose a modified
Dijkstra-like algorithm to tackle (1). Initially, we define positive
and negative temporary labels and for each node

. Similarly, we denote and as the permanent
positive and negative labels for each . The sets of nodes
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Algorithm 6 Minimizing the Total Number of Negatively
Influenced Persons for Cyclic Graphs

1. Initialize , .
2. Define the permanent labels of the source as
and .

3. Assign the temporary labels of the remaining nodes
by:

if
o.w.
if
o.w.

where an infinite cost represents that no edge exists between
and .

4. Find a node such that:

5. if

6. else

7. if
STOP

else
8. Update the temporary labels :
9. if
10. if

11. else if

12. else
13. if

14. else if

15. Go to Step 4.

that are assigned permanent positive/negative labels are repre-
sented by and , respectively. The steps of our solution
for cyclic graphs are provided in Algorithm 5.
It is important to note that the optimal path in our model may

include a cycle, unlike the generalized shortest path algorithms
for cyclic graphs. The intuition behind this idea lies in the fact
that traversing a cycle may result in an even parity path with a
smaller cost than an acyclic path, due to a sign change through
the cycle.

Fig. 2. Grid network structure for the signed social graph.

VIII. MINIMIZING THE NUMBER OF NEGATIVELY INFLUENCED
PERSONS FOR GRAPHS WITH CYCLES

In this part, we introduce a Dijkstra-like algorithm for mini-
mizing the total number of negatively influenced persons while
influencing a destination in favor of an idea when the under-
lying graph contains cycles. From an algorithmic perspective
this problem can be formulated in a similar way to Algorithm 5,
however, we now update the temporary labels of each node at
each iteration to reflect the minimum number of negatively in-
fluenced nodes from the source to the node. The steps of this
algorithm are provided in Algorithm 6.

IX. NUMERICAL RESULTS
We first consider a small-scale network for our simulations to

motivate the propagation model and the optimal policies. Next,
we switch to a large-scale network and use the online Epinions
dataset to test our findings, and to demonstrate the impact of our
results. To this end, we first study a grid network with directed
acyclic links as shown in Fig. 2. In order to prevent directed cy-
cles, we focus our attention on grid networks where edge
exists only if , , and . That is, node
can only influence the nodes in the shaded rectangle in Fig. 2.
Here, the source node is at the top left corner in green and the
destination node is at the bottom right corner in blue.
We consider a random graph where the existence of edge

is modeled by a Bernoulli random variable where the
probability of existence for the edge is monotonically de-
creasing in the distance between nodes and . We presume
that edges with a small model close neighbors that
frequently interact with each other. We note that this differs
from the traditional notion of friendship, as two individuals
may be frequently engaging in social interactions even if they
are persons of different ideologies such as political rivals. To
this end, we posit that this information is gathered from sensor
data that measures the frequency of one person interacting
with another person through social discussions or debates. This
can be obtained by various methods ranging from analyzing
the conversations in which one person mentions another or
processing the textual transactions in social media. Similarly,
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a large stands for distant neighbors who know each
other at an acquaintance level, and do not interact frequently.
The propagation cost between nodes and is uniformly
distributed over :

(17)

where is a monotonically increasing function of the
distance between the two nodes:

(18)

where for all . The parameter is intro-
duced to capture the impact of social distances on physical costs
such as propagation delay. To this end, a large intensifies the
impact of the distance between two neighbors on the propaga-
tion cost for the edge between these two neighbors. In effect,
many real-world applications suggest that propagating a mes-
sage through distant neighbors often takes more effort. On the
other hand, with a low , distant neighbors are treated by the
network as close contacts as their propagation cost approaches
to those. All neighbors, whether socially distant or close, are
treated as equals by the network when is zero, i.e., the distance
between nodes has no effect on the propagation cost. Hence, this
parameter is termed the distance impact parameter throughout
our analysis. The coefficient is a design-specific weight pa-
rameter that is equal for all node pairs. We denote the proba-
bility of an edge having a positive sign by , which refers to
a friendship relation between the two nodes. Accordingly, the
probability of an edge having a negative label is in
which case the two persons experience an antagonistic relation-
ship type. Unless otherwise stated, we choose , ,
and as the default values for our simulations.
We demonstrate the optimal policies for Algorithm 1 for a

10-by-10 grid network in Figs. 3(a)–3(c) for various distance
impact parameters. We observe from Fig. 3(a) that for a small
, the optimal policy is achieved through distant neighbors as

the algorithm utilizes edges with longer distances without in-
curring a high propagation cost. This is consistent with our in-
tuition of distant neighbors becoming equally efficient as close
neighbors when is decreased. Hence, the algorithm reduces
the number of hops in order to lower the end-to-end costs, while
satisfying the positive influence constraint. On the other hand,
Fig. 3(c) shows that when is large, propagating through the
distant neighbors becomes too costly, and hence the optimal
policy is to follow close neighbors with more hops instead of
the distant ones.
We next introduce ignorance to our simulations through an

ignorance probability which is the probability that
node will ignore node while is attempting to transmit
a message of age to . It is defined as a monotonically
increasing function of and the distance between the two
nodes. Figs. 4(a)–4(c) show optimal paths for cost minimization
with message deterioration and ignorance following the steps in
Algorithm 2. By comparing Figs. 4(a) and 4(b), we observe that
increasing the activation cost results in a lower number of ac-
tivations even though older messages are more likely to be ig-
nored. We note that in Fig. 4(a) with a low activation cost, the

Fig. 3. Simulation results for costminimizationwith distance impact parameter
(a) , (b) , (c) . Solid lines denote edges with a positive
sign and dotted lines denote edges with a negative sign. The nodes visited by
the optimal path are demonstrated by filled circles.

second node on the path is activated even though the message
it receives has age 1. This is done in order to keep the mes-
sage fresh without incurring a high activation cost, and thus
prevent ignorance further down the path. Fig. 4(c) shows the
optimal path for the same setup except the costs do not depend
on distance. As a result, the optimal path is able to make bigger
jumps without incurring additional cost. However, we observe
that bigger jumps are more likely to result in ignorance, and
therefore a penalty for activation in the total cost.
Figs. 5(a)–5(c) show optimal paths that minimize the total

cost while negatively influencing no more than nodes calcu-
lated by Algorithm 3. As can be observed, a lower limits the
feasibility of paths more strictly. Thus, the minimum total cost
potentially increases. In addition, we see that the optimal path
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Fig. 4. Simulation results for cost minimization with message deterioration and
ignorance with activation cost (a) , (b) ,
(c) with distance-independent costs. Solid lines denote edges
with a positive sign and dotted lines denote edges with a negative sign. The
nodes visited by the optimal path are filled where a yellow filling indicates
activation as a result of ignorance, a cyan filling indicates activation without
ignorance.

in Fig. 5(a) negatively influences only 5 nodes when it can actu-
ally influence nodes. This implies that it is not always
optimal to negatively influence as many nodes as possible, i.e.,
increasing does not always result in a lower total cost.
Next, Figs. 6(a)–6(c) show optimal paths that minimize the

number of negatively influenced nodes in at most hops via
Algorithm 4. As in the previous experiment, lowering the value
of results in the elimination of some of the feasible paths,
and thus the optimal path is compelled to negatively influence
some of the nodes. Another interesting consequence of this lim-
itation is that the optimal policy may require the source node
to be seeded with the opposite of an idea, i.e., should be rec-
ommended against the idea or should start spreading negative

Fig. 5. Simulation results for cost minimization with at most negatively
influenced nodes where (a) , (b) , (c) . Solid lines denote
edges with a positive sign and dotted lines denote edges with a negative sign.
The nodes visited by the optimal path are filled where a red filling indicates a
negatively influenced node.

rumors on the original idea in order to influence the destina-
tion positively. This in turn allows the network to utilize an odd
path to the destination which results in a smaller number of neg-
atively influenced nodes than that results by the even paths.
Finally, we elaborate on the impact of positive and negative

edge sign distributions on network propagation. To this end, we
study the optimal policies under various edge sign probabili-
ties in Figs. 7(a)–7(c) and Figs. 8(a)–8(c). The evaluations
are performed for Algorithm 3 in which we observe that the
problem formulation is well suited to demonstrate the effect of
sign distributions. We present the optimal propagation policy of
minimum end-to-end cost for influencing a target node in favor
of an idea when no intermediate node is allowed to be influ-
enced negatively in Figs. 7(a)–7(c). We observe that as , i.e.,
the probability of an edge having a positive sign, increases, the
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Fig. 6. Simulation results for negative influence minimization with at most
hops where (a) , (b) , (c) . Solid lines denote edges with
a positive sign and dotted lines denote edges with a negative sign. The nodes
visited by the optimal path are filled where a red filling indicates a negatively
influenced node.

network consists mainly of friendship connections. As a result,
the algorithm can choose the best propagation path to minimize
the end-to-end cost over a large number of positive paths as in
Fig. 7(a). On the other hand when is decreased, the number
of paths that consists only of positively influenced nodes de-
creases as well, and the algorithm reduces the number of hops
as much as possible, which becomes a single node in Fig. 7(c).
The tolerance on the number of negatively influenced interme-
diate persons is increased in Figs. 8(a)–8(c). This in turn allows
for greater flexibility on the feasible paths, and the algorithm
can now choose a new optimal path with a lower total prop-
agation cost. Note that the optimal policies for the two prob-
lems coincide when , which eliminates the negative paths
and reduces the problems into conventional minimum delay
network propagation. We observe that the optimal policies in

Fig. 7. Simulation results for cost minimization with at most negatively
influenced nodes with positive edge probability (a) 1, (b) 0.5, (c) 0. Solid lines
denote edges with a positive sign and dotted lines denote edges with a negative
sign. The nodes visited by the optimal path are filled where a red filling indicates
a negatively influenced node.

Figs. 7(b), 7(c) and Figs. 8(b), 8(c) require initialization with a
negative disposition at the source as discussed for the previous
algorithms.
In addition to the small-scale simulations, we also perform

large-scale evaluations using online data. We chose to use the
Epinions social graph [13], a common topology used in the
signed networks literature [9], [10], [14], [19], [20] for ana-
lyzing friend and foe relationships in addition to trust and dis-
trust. Epinions is a consumer review website where users can
indicate their friends and foes based on the opinions of other
users. This signed social graph has 131828 nodes and 841372
edges, with a diameter (longest shortest path) of 14. Throughout
our evaluations, the source and destination nodes are selected
randomly. For every possible source-destination pair, we try to
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Fig. 8. Simulation results for cost minimization with at most negatively
influenced nodes with positive edge probability (a) 1, (b) 0.5, (c) 0. Solid lines
denote edges with a positive sign and dotted lines denote edges with a negative
sign. The nodes visited by the optimal path are filled where a red filling indicates
a negatively influenced node.

find the optimal path and propagation policy such that the source
positively influences the destination.
We compare the results between Dijkstra-type algorithms and

a naïve myopic algorithm to find a low cost positive path. The
firstDijkstra-typealgorithmwe implement isAlgorithm5,which
finds paths thatminimize the sumof the costs on the path between
source and destination nodes, where the cost between adjacent
nodes and is given by where is a weight parameter.
In our simulations, we select . The myopic algorithm is
referred to as shortestDFS. It is a depth first search algorithm that
traverses the graph starting from the source looking for the desti-
nation. At each node, it selects the successorwith lowest cost, re-
cursively repeating the process until the destination is reached. If
a path from a node to the destination is not found, the algorithm

selects a successor of the node with higher cost. For computa-
tional reasons,we limit the lengthof thepaths to1500.Finally,we
implement Algorithm 6, which seeks to minimize the number of
negatively influenced nodes on a path while influencing a desti-
nation in favor of an idea. This Dijkstra-type algorithm is termed
min negative path in the sequel.
First, we randomly select 100 sources and 100 destinations.

Using Algorithm 5, we find that each of the 100 sources is posi-
tively connected to 88.3 destinations on average. The median
number of destinations that are positively connected to each
source is 96.0. The average (respectively median) path length is
54.45 (respectively 40.0) hops with a variance of 2090.85 hops.
The average (respectively median) path cost is 3436.57 (respec-
tively 2488.4) with a variance of 10590519.21. The positive
paths found by the shortest DFS algorithm have an average (re-
spectively median) length of 660.73 (respectively 638.0) hops
with a variance of 160122.99. The average (respectively me-
dian) cost of these paths is 17604.64 (respectively 16875.4) with
a variance of 140341478.22. It can be observed that on the av-
erage, the cost of the paths from Algorithm 5 is less than a fifth
of the cost of the paths found by the shortest DFS algorithm.
For Algorithm 6 we find that the average (respectively me-

dian) path length is 4.023 (respectively 4.0) hops, with a vari-
ance of 0.843 hops. Relaxing the constraint to minimize costs
implies much shorter paths than what is found by Algorithm 5.
The average (respectively median) number of negatively influ-
enced nodes on each path is 0.096 (respectively 0), with a vari-
ance of 0.113. This means at least half of the paths have no
negatively influenced nodes.
Next, we implement the algorithms on a randomly selected

500 sources and 500 destinations. From Algorithm 5, we find
that each source is positively connected on average to 436.998
destinations. The median number of destinations positively
connected to each source is 490.0. The average (median) path
length is 55.15 (respectively 42.0) with variance 2166.64. The
average (respectively median) path cost is 3419.91 (respec-
tively 2363.7) with a variance of 10727606.92. On the other
hand, with shortest DFS the average (median) length of the
paths found is 726.95 (respectively 727.0). The average (me-
dian) cost of these paths is 19134.18 (respectively 18425.9).
Similar to the previous case, the average cost of Algorithm 5 is
less than a fifth of the cost of the paths found by shortest DFS.
We also find that, for Algorithm 6 the average (median) path

length is 4.097 (respectively 4.0) hops, with a variance of 1.044
hops. The average (median) number of negatively influenced
nodes on each path is 0.057 (respectively 0), with a variance of
0.058. Again, at least half of the optimal paths have no nega-
tively influenced nodes.
The results for the analysis of Algorithm 5 with the Epin-

ions dataset are provided in Table I for 100, 500 and 10000
sources and destinations, respectively. Similarly, the results of
the shortest DFS (myopic) algorithm are given in Table II. From
comparing the results in Tables I and II, we observe that the av-
erage cost of the paths found by the shortest DFS algorithm is
five times the cost of the paths found by Algorithm 5. Further
analysis on the selected 100 sources and 100 destinations show
that, among the 10000 possible source-destination pairs, in 8957
cases the destination is not reachable from the source with the
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TABLE I
MINIMUM COST ALGORITHM (ALGORITHM 5) RESULTS FOR THE EPINIONS DATASET.

TABLE II
RESULTS OF THE shortest DFS (MYOPIC) ALGORITHM WITH THE EPINIONS DATASET.

TABLE III
RESULTS FOR THE min negative path ALGORITHM (ALGORITHM 6) WITH THE EPINIONS DATASET.

shortest DFS algorithm. We note that some of these pairs may
in fact be unreachable as a natural result of the graph structure,
i.e., the source and the destination may not be connected. How-
ever, the same analysis shows that there exist only 1168 cases
in which the destination is not reachable from the source with
the Dijkstra-type algorithm. Hence, the number of paths discov-
ered by the shortest DFS algorithm is only a tenth of the paths
found by Algorithm 5. Similarly, for 500 sources and 500 desti-
nations, the number of cases a destination is not reachable from
the source with the shortest DFS algorithm is as large as 222650,
whereas with the Dijkstra-type algorithm this number is 31460.
Again, the number of paths found by the shortest DFS algorithm
is a tenth of Algorithm 5. As importantly, we have observed that
the shortest DFS algorithm can not terminate within a reason-
able amount of computing time for 10000 nodes.
The results for the implementation of the min negative path

algorithm, i.e., minimizing the total number of negatively influ-
enced persons on the Epinions dataset, are given in Table III for
100, 500 and 10000 sources and destinations.
The time complexity of the shortest DFS algorithm is ,

as with a regular DFS. That is because instead of visiting each
edge at most once, it can be traversed at most twice, once consid-
ering that the end node of the edge is on a positive path and once
on a negative path. This yields the same asymptotic complexity.
On the other hand, the modified Dijkstra's algorithm has com-
plexity , which is identical to the regular
Dijkstra's algorithm. That is because as with shortest DFS, each
edge may be traversed twice, which leads to the same asymp-
totic complexity as the regular Dijkstra's algorithm. However,

it is important to note that the shortest DFS algorithm does not
yield an optimal solution, as confirmed by the experimental re-
sults. On the other hand, the modified Dijkstra's procedure does.
An important outcome of our evaluations is that, even for a

very large number of source and destination pairs, at least half
of the paths have zero negatively influenced nodes. In addition,
the average number of hops in each path is less than 5. This jus-
tifies our intuition that, it is actually possible to find a relatively
short path from one node to another purely dominated by friend-
ship (homophily) relations. In effect, our findings show that in
general any node can influence another node positively within a
small number of hops.

X. CONCLUSION
We have studied a social network with positive and negative

relationship types, in which friends and foes are characterized
by positive and negative signs, respectively. We have proposed
a propagation scheme to influence a target person in favor of an
idea, an action, or a product. Depending on the underlying re-
lationship structure, we presume that persons are influenced in
their decisions by the observations made available to them. To
this end, our propagation schemes apply to networks with so-
cially aware sensors that can extract information about social
and physical phenomena. We have studied the optimal prop-
agation policies by integrating social awareness into network
propagation under influence-centric constraints. We have im-
plemented the proposed algorithms under an artificially created
setup as well as the Epinions dataset in order to gain an under-
standing of the optimal policies in both small and large-scale
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networks. We have observed that the average network propaga-
tion cost can be reduced significantly compared to naïve myopic
schemes, and that randomly chosen sources can positively influ-
ence randomly chosen destinations in over 87% of the cases.
In this paper, we have considered positive and negative rela-

tionships, and have assumed the knowledge of the underlying
social graph and the corresponding polarities. Future directions
include constructing a multilayer influence propagation scheme
for signed networks, incorporating multi-level relationship
types, multi-modal sensor observations, practical applications
in modern social networks, degree of positivity and negativity
through threshold based influence patterns, and developing
inference methods for enhancing situational awareness at the
target node.
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