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Abstract

Privacy-preserving machine learning (PPML) has
achieved exciting breakthroughs for secure col-
laborative training of machine learning models
under formal information-theoretic privacy guar-
antees. Despite the recent advances, communi-
cation bottleneck still remains as a major chal-
lenge against scalability to large neural networks.
To address this challenge, in this work we in-
troduce the first end-to-end multi-round multi-
party neural network training framework with
linear communication complexity, under formal
information-theoretic privacy guarantees. Our key
contribution is a scalable secure computing mech-
anism for iterative polynomial operations, which
incurs only linear communication overhead, sig-
nificantly improving over the quadratic state-of-
the-art, while providing formal end-to-end multi-
round information-theoretic privacy guarantees.
In doing so, our framework achieves equal adver-
sary tolerance, resilience to user dropouts, and
model accuracy as the state-of-the-art, while ad-
dressing a key challenge in scalable training.

1. Introduction

Secure multi-party collaborative learning has achieved
promising advances for training ML models across multiple
data-owners (users), under formal information-theoretic pri-
vacy guarantees (Mohassel & Zhang, 2017; Ben-Or et al.,
1988; Beerliova-Trubiniova & Hirt, 2008; Al-Rubaie &
Chang, 2019; Damgard & Nielsen, 2007; Nikolaenko et al.,
2013; Gascoén et al., 2017; Mohassel & Rindal, 2018; Wagh
et al., 2018). These frameworks typically build on a secure
multi-party computing (MPC) primitive known as secret
sharing (Shamir, 1979), where each user encodes their lo-
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cal dataset (i.e., the secret) by injecting randomness in the
form of random masks, and sends an encoded dataset (i.e.,
secret share) to every other user. The training computations
are then performed on the encoded datasets, as opposed
to the true data. At the end of training, i.e., after multiple
(global) training rounds, the final model can be decoded
by collecting the coded computations (performed on the
encoded datasets) from a sufficient number of users. In
doing so, no information is revealed on the local datasets,
beyond the final model. More recently, information and
coding theoretic approaches have demonstrated promising
advances in PPML, which utilize a Lagrange interpolation
polynomial to encode the datasets, to inject randomness
and (computational) redundancy across the computations
performed by different users (Yu et al., 2019; So et al., 2020;
2021). Doing so can achieve an order-of-magnitude speed-
up in training compared to state-of-the-art cryptographic
baselines, while providing information-theoretic privacy for
the local datasets, and resilience against user dropouts.

A major advantage is their compatibility with complemen-
tary differential privacy (DP) techniques, where a discrete
noise mechanism can be employed to prevent potential
information leakage also from the final model (Dwork
et al., 2006; Chaudhuri & Monteleoni, 2009; Abadi et al.,
2016; Pathak et al., 2010; McMahan et al., 2018; Rajku-
mar & Agarwal, 2012; Jayaraman et al., 2018). Several
notable works have demonstrated that integrating the two
can achieve the best of both worlds; by reducing the amount
of noise that should be added to the local computations in
distributed settings, achieving better model accuracy for DP,
while preventing information leakage from the final model
(Chen et al., 2022b;a; Kairouz et al., 2021). Though be-
yond our current focus, we note that our techniques can be
integrated with DP as an interesting future direction.

Communication bottleneck. The main challenge against
the scalability of end-to-end information-theoretic learning
frameworks is their extensive communication complexity,
limiting applications to simpler linear/logistic regression
tasks, and preventing scalability beyond 2 — 4 users in
more complex neural network training. As a result, for
neural networks, information-theoretic secure computing
approaches are primarily utilized for the gradient aggre-
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gation task for large-scale distributed/federated learning,
also known as secure aggregation (SA), where the aggre-
gated gradient/model is revealed after each (global) training
round (Bonawitz et al., 2017; Bell et al., 2020; Zhao & Sun,
2021; So et al., 2022). On the other hand, SA is vulnera-
ble to multi-round privacy attacks; the aggregated models
can still reveal extensive information over multiple training
rounds, and the privacy protection degrades as the number
of training rounds increase (So et al., 2023; Elkordy et al.,
2023). In contrast, in this work our focus is on end-to-
end information-theoretic privacy, where no intermediate
model/gradient can be revealed (even in aggregated form)
beyond the final model after multiple training rounds.

Contributions. To address this challenge, we introduce
CLOVER, the first scalable multi-round collaborative neural
network training framework under end-to-end multi-round
information-theoretic privacy, with linear communication
complexity. In doing so, we separate communication into
online (data-dependent) and offline (data-agnostic) compo-
nents. Offline communication is independent from data
(e.g., randomness generation), and can be carried out in
advance when network load is low. We then offload the
communication-intensive operations (with quadratic over-
head) to the offline phase, and introduce a coded randomness
generation mechanism, using Lagrange interpolation poly-
nomials along with MDS (Maximum Distance Separable)
codes, such that the total number of variables communicated
is inversely proportional to the number of users, with linear
amortized communication complexity. In a network of N
users, our framework achieves an O(V) (linear) communi-
cation complexity both offline and online (for neural net-
work training), as opposed to the O(NN?) (quadratic) online
communication complexity of the state of the art (which, as
a result, is limited to simpler logistic/linear regression) (So
et al., 2020), while achieving equal adversary and dropout
resilience. Our contributions are summarized as:

* We propose the first scalable neural network training
framework with end-to-end multi-round information-
theoretic privacy, and linear communication overhead.

* Our framework provides formal information-theoretic
privacy guarantees, and cuts the communication over-
head while achieving equal adversary and dropout re-
silience as the state-of-the-art.

* Beyond distributed learning, our framework can open
up further research in a broad range of privacy-sensitive
iterative algorithms, such as for federated analytics.

2. Problem Formulation

Multi-party Neural Network Training.

We consider a network of N users. User ¢ holds a local
dataset given by a d x m; matrix X;, where m; and d de-
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Figure I. Neural architecture. The neural network consists of an
input layer, L hidden layers, and an output (classification) layer.
The encoded model parameters connecting layer [ — 1 to layer
Lis given by W € Fal* ™" for user i € [N], where d; is the
number of neurons at layer [.

note the number of data points and features, respectively.
The corresponding labels are represented by a ¢ x m; binary
matrix Y;, where the k" column is the one-hot label vector
for data point k& € [m;], and c is the number of classes. The
dataset and labels across the entire network are denoted by
X £ (Xy,...,Xx)andY 2 (Yq,...,Yy). The commu-
nication topology is decentralized (without a central server).
We consider a polynomial neural architecture (Chrysos et al.,
2021; Kileel et al., 2019) along with quadratic activations
and mean-squared error loss. The goal is to learn a model
W to minimize the empirical loss function:
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where m £ 37, vy my, and f(x;, W) is the output of a
feed-forward neural network consisting of L hidden layers,
and a final classification layer (layer L + 1) as shown in
Fig. 1, at a single data point x; with label y; (i*" column of
X and Y). The model parameters connecting layer [ — 1 to
layer [ are given by a matrix W' of size d; x d;_, where
d; is the number of neurons at layer [ € [L + 1], and W =
(WL, ..., WEFTY) | Accordingly, dy = d, and dp 1 = c.
Training is done via gradient descent, where the model is
updated iteratively as,

n
%% = . XV
(t+1) = > VLWixiy:) @
i1€[m]
where VL(W (t);x;,y;) is the gradient for a single data

point, W () is the estimated model parameters from training
round ¢. Up to D users may drop out at each training round
(e.g., due to poor wireless conditions or unavailability).

Threat Model. Our focus is on an honest-but curious
adversary model, in which adversaries follow the protocol
but try to obtain further information about the local datasets
of honest users. Up to 7" users are adversarial, who may
collude with each other. The set of adversarial and honest
users are denoted by 7 and #, respectively.

Information-theoretic Privacy. Our goal is end-to-end
information-theoretic privacy, where adversaries learn no
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information about the local datasets of honest users, beyond
the final model. Formally, this can be stated as,

TU{X Y s M X, Yitier, W(J)) =0 (3)

for any 7 such that |T| < T, where J is the total number
of training rounds, and M is the collection of all mes-
sages received or generated by the adversaries. Similar to
(Bonawitz et al., 2017; So et al., 2020; Bell et al., 2020),
our framework is bound to finite field operations, where
the datasets are represented in a finite field IF,, of integers
modulo a large prime p.

Main Problem. To address this challenge, a recent
PPML framework for end-to-end (multi-round) information-
theoretic privacy (3) is the COPML framework from (So
et al., 2020). COPML utilizes Lagrange Coded Computing
(LCC) (Yu et al., 2017) to encode the datasets and model,
which distributes the training load effectively across the
clients, and accelerates the local computations, providing
an order of magnitude speed-up compared to well-known
secure computing frameworks (Ben-Or et al., 1988; Beer-
liova-Trubiniova & Hirt, 2008). To do so, the dataset X
is first partitioned into K equal-sized shards, and then en-
coded using a Lagrange interpolation polynomial, along
with 7" random masks. Each user then obtains an en-
coded dataset X;, whose size is only (1/K)* of the orig-
inal dataset X. Training is then performed on the coded
datasets, and the final model W (J) is decoded by poly-
nomial interpolation, by collecting the computations from
N—D > (deg f)(K +T — 1) + 1 surviving users, where
deg f quantifies the polynomial degree after J training
rounds. Parameter K quantifies the degree of paralleliza-
tion; each user processes (1/K )th of the dataset X, hence
as the network size N grows, one can select a larger K for
faster training.

On the other hand, deg f grows exponentially after each
multiplication operation (associated with gradient compu-
tations). To prevent a degree explosion, users perform an
expensive degree reduction operation, which requires al-
ternating between Lagrange coding and Shamir’s secret
sharing. After each local computation (e.g., gradient com-
putations) performed using the Lagrange coded dataset and
model, users decode the computations using Shamir’s secret
sharing, update the model, and then re-encode the model
using a new Lagrange polynomial (So et al., 2020). This
decode-update-re-encode process incurs a quadratic com-
munication overhead after each training round. As a result,
COPML is applied to simpler logistic/linear regression mod-
els, as opposed to more complex neural network training. In
this work, we ask the following question,

e Can we train a neural network to solve (1) with linear
communication complexity, with provable end-to-end
information-theoretic privacy guarantees from (3)?

To address this challenge, we propose CLOVER, a scalable
multi-party neural network training framework with end-
to-end information-theoretic privacy. Our key contribution
is a novel coded computing mechanism, termed Double
Lagrange Coding, for handling iterative multiplicative oper-
ations associated with forward/backward propagation. We
next describe the individual steps of our framework.

3. The CLOVER Framework

Dataset and Label Encoding. Initially, users agree on N +
K + T distinct public parameters {c; } jc(n]» 155 }je[x+1]
from IF,,. Each user ¢ € [N] then partitions its local dataset
into K equal-sized shards, X; = (X1, ..., X,k ), and gen-
erates a Lagrange polynomial of degree K + 1" — 1:

z— [
wi(z) £ Z X Br — B
ke[K] le[K+T\{k} "™ )
K
" Br. — By
k=K-+1 IE[K+T\ {k}

where u;(B;) = X, and {Vip} e 1 are T uniformly

dx T S
random masks from Fj, " * , and sends X;; 2 u;(a;) to
user j € [N]. By concatenating the received {X;;};e[n1s
each user ¢ € [N] then obtains an encoded dataset:

~ ~ dx
Xi 2 (Xigye o, Xpi) € K Q)

The labels Y are encoded similarly, at the end of which
each user i € {N'} obtains the encoded labels Y; € Fj,* ®
The goal of dataset and label encoding is two-fold: 1) hide
their content against adversaries, 2) reduce the size of data
processed during training; each user computes the gradient
over the encoded dataset X;, whose size is (1/K)'" of the
original dataset X. As the network size N increases, one can
select a larger K, reducing the computation load per-user,
speeding up training.

Forward/Backward Propagation. To preserve the pri-
vacy of intermediate computations, the model W(0) =
(W1(0),..., WEFL(0)) is initialized randomly, also by en-
coding via a Lagrange polynomial of degree K + 7 — 1, at
the end of which each user ¢ € [N] learns an encoded model
Wﬁ (0) for all I € [L+ 1]. Using the encoded dataset and la-
bels, users then compute the gradient and update the model.
The main challenge, however, is that the polynomial degree
doubles with each multiplication operation. Specifically, for
forward propagation, each user ¢ € [N] computes,

Zi(t) £ Wi(t) UL (t) e FOT, 6)
UL(t) £ g(Z(t)) € T )

for all [ € [L + 1], where U%(¢) £ X,, and g(-) is the
quadratic activation function applied element-wise. Note



Beyond Secure Aggregation: Scalable Multi-Round Secure Collaborative Learning

that )NC, corresponds to (evaluations of) a degree K + 71" — 1
polynomial, on the other hand, the degree of the resulting
polynomial in (6) grows exponentially as the number of lay-
ers increase, which requires users to reduce the polynomial
degree without breaching privacy. To address this, users
carry out a degree reduction operation ¢(-),

(Z4(8), .. Zi (1) < S(ZL(D), . Ziy (1)) ®)
which reduces the polynomial degree back to K + T — 1.

Double Lagrange Coding. Due to space constraints), the
details of this degree reduction operation are provided in
App. A. At the outset, for each multiplication operation, this
mechanism generates two Lagrange polynomials, a higher
degree polynomial used to decode a masked version of the
true computations (while keeping their true values hidden),
and a lower degree polynomial to re-encode them. In do-
ing so, we decouple communication into online and offline
phases, and offload the communication-intensive operations
to the latter. We then propose an efficient offline randomness
generation mechanism where the communication volume
is inversely proportional to the number of users, and the
overall communication overhead (online and offline) is lin-
ear. At the end of (8), each user i € [N] obtains an updated
coded vector Zﬁ (t) corresponding to a Lagrange polynomial
with degree K 4 T — 1. The steps for backpropagation are
similar; after each multiplication operation, users carry out
a degree reduction operation as in (8), to reduce the degree
backto K + T — 1.

After computing the gradients, users update the model ac-
cording to (2), as described in App. B. At the end of J

rounds, parties collect the coded models W;(.J) from any
set of K + T users, and decode the final model W (.J) using
polynomial interpolation.

4. Theoretical Analysis

We now present the formal guarantees of CLOVER.

Theorem 4.1. (Information-theoretic privacy) CLOVER
guarantees information theoretic privacy:

I{X, Yitien; Mr{Xs, Yitier, W(J)) =0 (9)

against any set T of | T| <T adversaries, where M is the
collection of all messages held by adversaries.

Proof. The proof is provided in Appendix C. O

In the sequel, we let m; = 7 for all i € [N], to present the
complexity explicitly with respect to the number of users.

Theorem 4.2. (Communication complexity) The
per-user communication complexity of CLOVER is

O(W + INm > ic(n41) didi—1) in the online phase,

and O(% ZZG[L+1] dyd;_1) in the offline phase,
respectively. With T = O(N) and K = O(N), the total
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Figure 2. Model accuracy and training loss for the Fashion MNIST
and CIFAR-10 datasets, with respect to the baseline neural network
with ReLU activation and softmax classification (representing our
target accuracy).

communication complexity across all N users (including
both online and offline phases) is linear in the number of

users, which is O(N(d + c)m + NJm iy 41y didi—1).

The recovery threshold is defined as the minimum number
of users required to correctly decode the final model.

Theorem 4.3. (Recovery threshold) The recovery threshold
of CLOVERis N > D+ 3(K+T—1)+ 1.

Proof. The recovery threshold is given by the minimum
number of computations required for polynomial interpola-
tion, whichis N — D > 3(K +T — 1) + 1 from Section 3,
which is equal to (So et al., 2020). O

5. Experiments

To evaluate the numerical performance, we have imple-
mented a distributed network with N = 64 users, using
the MPT4Py Message Passing Interface, and train a two
layer neural network for image classification on the Fashion-
MNIST and CIFAR-10 datasets. We defer the additional
experimental details to App. D.

Performance evaluation. To correctly recover the fi-
nal model, the number of clients must satisfy the recov-
ery threshold from Thm. 4.3. where the degree of pri-
vacy (T') and parallelization (K) are calculated by letting
N=3K+T-1)+1withT = [&]and K = [§|-T.
Similar to (So et al., 2020), the bandwidth and finite field
size are set as 40Mbps and ¢ = 226 — 5, respectively.
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Figure 3. (a) Total communication volume (across all clients) for
CLOVER and COPML, and (b) Parallelization gain for CLOVER.

Model accuracy. For the baseline target accuracy, we evalu-
ate the model accuracy of the same two-layer neural network
trained in the real number domain, by utilizing ReLLU ac-
tivation (Agarap, 2019) and Adam optimizer (Kingma &
Ba, 2017). In Fig. 2, we compare the model accuracy of
CLOVER, with respect to the baseline for N = 64.

Communication volume. In Fig. 5(a), we compare the to-
tal communication volume (across all clients) for CLOVER
with respect to COPML (So et al., 2020) for CIFAR-10. We
observe that CLOVER can significantly reduce the commu-
nication overhead. Finally, in Fig. 5(b), we demonstrate
the communication volume of CLOVER with respect to K.
‘We observe that as K increases, the communication volume
decreases, This also demonstrates a trade-off between com-
munication overhead, adversary and dropout resilience, as
D+3(K+T-1)+1<N.

6. Conclusion

This work presents a scalable neural network training frame-
work with strong information-theoretic privacy guarantees.
Our framework achieves linear communication complexity,
while providing fundamental trade-offs between parallelism
gain, adversary, and dropout resilience. Future directions
include extending our secure coded computing framework
to different neural network structures and adversary models
(e.g., active adversaries).
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A. Double Lagrange Coding

We now introduce the details of our degree reduction primitive, Double Lagrange Coding (DLC). This operation builds on
two Lagrange polynomials; a higher degree polynomial to decode a masked version of the true gradient computations, and
a lower degree Lagrange polynomial to re-encode them. To do so, we utilize an efficient shared randomness generation
mechanism using MDS codes, with linear amortized communication complexity.

Consider a polynomial f(-) of degree deg(f) = M forsome M > K+T —1, where f(31),..., f(Bk) € Fgl *d2 represent
the K desired computations (e.g., gradient computations for K data points) for some d1, do, and f(«;) is the computation
performed by user ¢ € [N]. DLC then generates a new (low-degree) Lagrange polynomial f’(-) of degree K + T — 1, such
that f'(8) = f(B) forall k € [K], and f'(8)) € F§* are uniformly random vectors for k € {K +1,..., K + T},
At the end, each user ¢ € [IN] only learns an evaluation point f’(«;), without learning any information about the true
computations { f'(Bx) }xe|k]. Accordingly, the new (low degree) polynomial preserves the K intended computation results
from the old (higher degree) polynomial, without revealing any information about their true values.

To do so, DLC builds on the following offline (data-agnostic) and online (data-dependent) phases. The offline phase is
independent from the data, which can be performed in advance when the network load is low. The online phase depends on
data, and is performed after training starts.

(Offline) In the offline phase, users first agree on M + 1 distinct public parameters 61, . .., 0y 41 € IFp such that 6, = Sy,
for all k € [K]. Each user i € [N] then generates M + 1 uniformly random matrices R;1, ..., R; ar41 of size X do
from IF),, and forms a Lagrange polynomial of degree M,

S Ry [ 24 (10)

0k — 91
ke[M+1] le[M+1]\{k}

d
N—

where 1);(0)) = Ry, for all k € [M + 1]. User 4 then sends an encoded vector,

R’L] éwz(aj) (11)

to every other user j € [N]. In addition, user ¢ generates a second (lower degree) Lagrange polynomial of degree K +7T — 1,

_ , z—
B Z R H Br — Bi

ke[K] le[K+TN\{k} 8
z—
- > @ I 4= 61 (12)
ke{K41, . K+T}  le[K+T\{k} F 7l
4
where Q;, € Fp' ™" “® are uniformly random matrices for k€ {K + 1, ..., K + T'}. Next, user ¢ sends an encoded vector,
ﬁij =S O'i(Oéj) (13)

to every other user j € [N]. After receiving {f{ji, R;i}jen user i € [N] combines the received matrices to generate two
new Lagrange polynomials,

B2 (Y MRL- Y N R (14)
JE[N] JE[N]
= > Re ] _Zl (15)
ke[M+1]  le[M+i\{k} F 7t
Rz (3 MR YN ) (16)
JE[N] JE[N]
- B a; — B
- Y R + Q (17)
kez[l:{ * ZG[KJlr_[T]\{k} Br =B ke{KHZ..:.,KJrT} ’ ze[KJlr_T[}\{k} B — B

where Ry, £ (30 c iy MRy 2 e AR T and Qi = (e n M Qe+ 5 2 jen) Mv -7 Q) In doing
so, the key motivation is to generate high dimensional shared randomness using a lower dimensional random polynomial

7
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generated by each user. Specifically, the dimension of the random vectors generated (and embedded in a Lagrange
polynomial) by each user has size Nd_lT X dg, whereas the size of the random vectors embedded in the Lagrange polynomials
from (14) and (16) both have size d; X ds.

(Online) In the online phase, each user i € [N] broadcasts f(c;) — R, which can be viewed as an evaluation of a degree M
monomial h(z) = f(z) — ¥(z) at point z = «;, where

h(ew) = flew) — ¥(ew) = flai) = R; Vi€ [N], (18)
h(Br) = f(Br) — ¥(Br) = f(Br) — Ri Vk € [K] (19)

such that the desired computations f () are hidden by an additive random mask Ry, = (), where

2 S R ] 9"; _—06l‘l (20)

kE[M+1] le[M+1]\{k}

Then, after receiving h(ca;) from a set Z of at least |Z| > M + 1 users, every user can interpolate the polynomial h(z),
and compute h(8;) = f(Br) — ¥ (Bk) for all k € [K]. Finally, each user ¢ € [N] re-encodes the desired computations
{f(Br) }re[x) with a degree K + T — 1 Lagrange polynomial,

flay= Y wo) I §=04R, @
ke[K] ke[K+T\{k} " P
o — B o — B
= > 16 I + >ooovie ] (22)
ke[K] ke[K+TI\{k} B — B ke{K+1,..K+T}  Ie[K+T]\{k} B — B

B. Details of the Model Updating Stage

For updating the model, in principle, one can collect the evaluations from at any set of 3(KX + T — 1) + 1 users to decode the
true gradients using polynomial interpolation, and then sum them up. However, revealing the gradients can breach the privacy
of local datasets. To address this, we propose a privacy-preserving model update mechanism with linear communication
complexity. The key intuition is to decode a masked version of the K true gradients for each coded gradient (where the true
gradient is hidden by additive random masks), aggregate them, and re-encode them with a Lagrange polynomial, while
simultaneously ensuring the cancellation of all additive masks. At the end, each user i € [N] obtains a coded gradient G
that encodes the sum of all gradients )", €m] VL(W (t);x;,y;) from the individual data points with a Lagrange polynomial

of degree K + T' — 1, using which each user updates the model as Wﬁ — VVﬁ - %éi foralll € [L +1].

Our model update process consists of the following offline and online phases.

(Offline) Users agree on B £ 3(K + T — 1) + 1 public parameters {y}re(p) such that u, = B for k € [K], and
{pr}f_ ., are distinct public parameters. Then, user i € [N] constructs a Lagrange polynomial of degree B — 1:

b (= ZBMIIf:ﬂ (23)

tetBey T
A
foreach! € [L+ 1] and b € [m/K] where B}, € Fp)" 7" i
sends an encoded mask Bé” 2 () to user j € [N]. Upon receiving {Bj; } je(n) bem/x]> user j € [N] generates a
(larger dimensional) encoded mask:

are generated independently uniformly at random, and

T
(vaﬂf ZA £(Bl)7) 24)
foreachl € [L + 1] and b € [m/K], which can be viewed as an evaluation point of a degree B — 1 polynomial,

éZBék H Q- (25)

ke[B] LBk} HR T
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where pl (o) = ]A?;fn and il (Br) = ﬁlbk such that

By, = ( Z N (BT, Z My _r(Bii) ) (26)

JE[N] JE[N]
for all kK € [B]. In addition, user ¢ € [N] constructs a smaller degree (degree K + 7' — 1) Lagrange polynomial, by
aggregating the locally generated randomness,

K+T

-8 -8
IEDNEDS ZBM) I =5+ >® I 55 @7)

ke[K] belm/K|ke[K le[K+TI\{k} k=K+1 le[K+T)\{k}

4
for each [ € [L + 1], where {E;;, } 17F 4 EFYT “H are generated independently and uniformly at random, and sends
=l

B,; = 7/(a;) to user j € [N]. After receiving {E;i} je[n]» user i € [N] generates a larger dimensional encoded mask,
, T
(X M@ S M (BT 28)
JE[N] JE[N]

for each ! € [L + 1], which can be viewed as an evaluation point of a degree K + T — 1 polynomial,

K+T

! ! a— B
ZB H Bk_ﬁl+ Z Ei H Br — B (29)

ke[K]  IE[K+T)\{k} k=K+1  1e[K+TI\{k}

where 7'(a;) = By, whereas 7/(8),) = B! fork € [K]and 7'(8;) = E! fork € {K +1,..., K + T}, such that

B2 Y > By (30)

be[m/K] k' €[K)

>

T
Ezé(ZAJE e SN ) 31)
JE[N]
(Online) In the online phase, each user i € [N] broadcasts,
ééi = ééz - E%n (32)

foreach! € [L 4 1] and b € [m/K]. Note that (32) can be viewed as evaluation points of a degree B — 1 polynomial
rl(e) — () where GL. = rl(a;) — 7}(a;) fori € [N]. As such, after receiving (32) from any set of at least B users,
each user can decode the masked gradient r{ (8y) — it (Bk) = rl(Bk) — Bi, forall k € [K] and b € [m/K], where the
true gradient ré( Bk ) is hidden by the mask Bé .- Finally, each user ¢ € [N] locally aggregates and re-encodes the masked
gradients by forming a degree K + T' — 1 Lagrange polynomial,

G2y (X Y ti-Bi) [ 55 +B (33)
ke[K]  be[2] K e[K] le[K 4T /Bk ﬁz
N o~
= l
’fezfﬂ(b;]k;( " ﬂk/) Ei— ]Bk Jrk;HE le [K-{l-_T[ {k}ﬁ’“_ﬁl Y

where the additive masks B}, cancel out in (33), hence (34) encodes the sum gradient Zie[m] VLW (t);x,y:) =
(Zbe[m > kel 7! (Bk) over all data points as shown in (2).

C. Information-Theoretic Privacy

Proof. The privacy of the dataset and label encoding follows from (So et al., 2020). In the following, we show that the
degree reduction operation ¢(-) preserves information-theoretic privacy for any arbitrary function f(-). From (11), (13), and

9
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(18),

T({Xs, Yitien; {ﬁij> RijYiew,jer, {f(o) _ﬁi}ie[N]a

{RirbieT kem+1)5 1 Qi YieT ke +1,... k+7H M AKX, YitieT, W(J)) (35)
= I({Xi, Y} iew; {Rij, Rij}ijeg%l_,v {f(0r) =R} reipr+1)s

{RikYieT kem+1) {Qik YieT ke (r+1,.... k+1 M AKX, Yitie, W(J)) (36)
:H({ﬁijvf{ij}ijee?%l_,a{f(gk) Ry} eepprsa){Rir} eziﬁl] AQirtieT ker+1,... k+1H M AKX, Yitier, W(J))

- H({ﬁij7f{ij}ig%, ASfOk) —Ritreprsip ARk} e, AQiktieT ke (k1. .k +1y M A{Xs, Yitievy, W(J))
JET ke[M+1]
37

where M £ (M%—, MZ M2 M4T’1, .. /\/l4 ot 1) in (35), and (36) follows from the fact that there is a bijective mapping

from any M + 1 evaluation points { f(6x) — R } ke[ar+1) to a valid (feasible) set of local computations { f(c;) — f{i}ie[ N>
since the local computations in (18) correspond to evaluations of a degree M polynomial h(z) = f(z) — 1(z), which can
be uniquely reconstructed from any set of at least A + 1 evaluation points. For the first term in (37), we find that,

H({Rij Rijtierjer{f(0r)— Ry} et iRk} ’L[JGWT o
+

{QirtieT ketr+1,... k41 M AKX, Yitier, W(J))
- H({lev R’LJ }’LG'H,jGT? {Rzk} €T,

ke[M+1]
{ro0 - (3 W 'RE... > A}\,lTRLk) } ,
A A ke[M+1]
1€[N] i€[N]
{QirtieT ker+1,... k+1HMAXLY i bie, W(J)) (38)
= H({Ri;, Ry icnjer, {Rie} ieT,
ke[M+1]
1—1 i—1
{£00-( X ARE.... SR ) }k_e[MH],
1€[N-T] 1€[N-T]
{QirtieT ketr+1,... k417 M AKX, Yitier, W(J)) (39
T
<
_(T—&-D—i—l)dl(l—i-NiT)logp (40)

where (39) holds since,

(ﬁlj,...,f{N,T,j):Q(aj)— > (f6w)-

ke[D+1]
i—1pT i-1 pT\T o — b —1
(X MR Y wLRLY) O[T oM
1€[N-T)] 1€E[N-T)] le[D+1]\{k}
such that M is an (N — T') x (N — T') MDS matrix (hence invertible),

1 1
A\ o AN_T

M = . . . 41

I

and that the local computations { f(«;)};e7 are already known by the adversaries, i.e., { f(o;)},;c7 € M. Finally, (40)
holds since conditioning cannot increase entropy, and that entropy is maximized by the uniform distribution. For the second

10
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term in (37), we find that,

H({Rij, Rijbienjer, {fO00) —Ridreprn {Rin} ieT,
ke[M41]

{Qir}ieT ke +1,.... k+1y M AKX, Yitiepn), W(J))
> H({Rij, Rijtierjer, {f(0r) — Ri et
{RirtieT wepit1), {1 Qik YieT ke {k+1,... k+T}HM,

{Xe, Yitien), W(J), {f(0r) }eeppr+1)) (42)
= H({Ri; Ri;Vienjer ARk Ivepprs1) ARk} ieT,
ke[M-1]

{QirtieT ke 11,....k+1}) (43)

:H({ﬁiijij}iEH,a{Rik} €T, AQir} €T, ,
JET ke[M+1] ke{K+1,...,K+T}

i— i— T
{( Z MNT'RY, Z Ay irRE) }ke[]VI+1])

i€[N] i€[N]

({szvR’L]}’LEH,7{R'Lk} €T, 7{sz} €T,
kE[M+1] Ke{K+1,. K+T}

Z )‘Z 1R“f"" Z >‘3V1TR }ke[M—i-l])

1E[N-T] 1E[N-T]

({RZ_]?RZj}’LEH,7{RZk} €T, {sz} i€T,
ke[M+1] ke{K+1,.. 7K-‘,—T}

{(R1k7~- s Ry-76)M}renr11)) (44)

({RLJ7R7,]}ZEH,7{RL]€} €T, {Qlk} i€T,
ke[M+1] e {K+L . KA+T}

{(Ruﬁ s RNo1k) eeimt1)) (45)

({RZJ}’ZEH 7{R'Lk} €T, {Qik} €T, )
ke[M41] ke{K+1,.,K+T}

{Rik, .-, RN_Tk) brenrt1]) (46)
= H({Ri;}ier, {Rir tie v —1) ke[pr+1])
JET

+ H({Rir}ie[N—1),ke[M+1])

+ H{Rir} e, {Qix} ieT, ) (47)
ke[M+1] ke{K+1,.. . K+T}
:(D+T+1)dl(1+ T )logp (48)
N_T

where (42) holds since conditioning cannot increase entropy; (43) follows from the independence of randomness generated;
(44) follows from (41); (45) holds since M is a (N — T') x (N — T') MDS matrix (hence is invertible); (46) holds since
{ﬁij }jeT can be perfectly reconstructed from {R.x. }re[ar41] using (10) for all i € H; (47) follows from the independence
of randomness generated; (48) follows from the entropy of uniform random variables, along with,

H({Rij}Yier, {Rik bieN—1] ke[m+1))
JET

=> H{ > Qikpjn}; €T) (49)
1EH ke{K+1,....K+T}

= Z H(Qix+1:---5Qix+7)T) (50
icH

=Y H(Qix41:-- Qiksr) (51
ieH
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where p;; denotes the Lagrange coefficient,

o — B
et 1 55 e
le[K+T)\{k}

forallj € [N]andk € [K +T],andT"isa (N —T) x (N — T)) MDS matrix,

PN-T+1,K+1 " PN,K+1
r2 : : (53)

PN-T+1,K+T *°° PN,K+T

hence is invertible. Finally, by combining (48) and (40) with (37),

0 <I({Xs, Yitien: {Rij, Rijhienjers {f (@) —Riticins
{RirtieT kep1), {Qik ieT ke (41, k+1H M AX, Yitier, W(J)) <0 (54)

The steps for consecutive degree reduction operations, along with the model update follows the same lines (as they build on
the same principles as our degree reduction mechanism), which completes the proof.

O

D. Additional Experimental Details

Setup. Our study focuses on training a fully connected neural network architecture. This architecture consists of an input
layer, followed by a hidden layer comprising of 128 neurons, and finally a classification layer. To evaluate the performance
of our model, we conduct experiments using two distinct datasets: Fashion MNIST (Xiao et al., 2017), and CIFAR-10
(Krizhevsky et al., 2009). For the CIFAR-10 dataset, we utilize a pre-trained VGG (Simonyan & Zisserman, 2015) model
for feature extraction as a part of the neural network implementation. Additionally, we evenly distribute all the datasets
across the clients.

Benchmark. For the baseline for target accuracy, we conducted experiments to evaluate the model accuracy of the
two-layer neural network architecture trained in the real number domain, by utilizing ReLU activation functions (Agarap,
2019) and Adam optimizer (Kingma & Ba, 2017). Additionally, we implement COPML from (So et al., 2020) to assess the
communication overhead, which serves as a benchmark for private computation without revealing the inputs. We note that
the gradient computations and model update are the same for both COPML and CLOVER.

Performance evaluation. To correctly recover the final model, the number of clients must satisfy the recovery threshold
from Thm. 4.3. where the degree of privacy (") and parallelization (K) are calculated, by letting N = 3(K + T — 1) + 1
with T = L%J and K = L%j — T Similar to (So et al., 2020), the bandwidth and finite field size are set as 40Mbps and
q = 226 — 5, respectively.

12



