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Abstract—Privacy-preserving machine learning has achieved
exciting breakthroughs for collaboratively training machine
learning models under strong information-theoretic privacy guar-
antees. Despite the recent advances, communication bottleneck
still remains as a major challenge against scalability to large
neural networks. To address this challenge, in this work we
introduce CLOVER, the first multi-party neural network training
framework with linear communication complexity, significantly
improving over the quadratic state-of-the-art, under strong end-
to-end information-theoretic privacy guarantees. CLOVER builds
on a novel degree reduction mechanism with linear communi-
cation complexity, termed Double Lagrange Coding, for coded
computing. While providing strong multi-round information-
theoretic privacy guarantees, CLOVER achieves equal adversary
tolerance, resilience to user dropouts, and model accuracy as the
state-of-the-art, while significantly cutting down the communica-
tion overhead. In doing so, CLOVER addresses a key technical
challenge in collaborative neural network training, paving the
way for large-scale privacy-aware deep learning applications.

I. INTRODUCTION

Privacy-preserving collaborative machine learning (PPML)
is a popular paradigm for training ML models across multiple
data-owners (users), without compromising the privacy of lo-
cal data [1]-[9]. Lagrange coded computing (LCC) is a recent
information-theoretic approach that has led to breakthrough
advances in PPML [10]-[12]. At the outset, LCC utilizes a
Lagrange interpolation polynomial to encode the datasets by
injecting randomness and (computational) redundancy across
the computations performed by different users. Training is
then performed on the encoded datasets, as if they were
performed on the true datasets. The additional randomness
is reversible; after multiple training rounds, the final model
can be correctly recovered using polynomial interpolation
(over the computations performed on the encoded data). LCC
provides strong information-theoretic privacy guarantees for
the sensitive data as well as resilience against user drop-outs,
while achieving an order-of-magnitude speed-up in training
compared to state-of-the-art cryptographic baselines [11].
Quadratic communication bottleneck. The major challenge
against the scalability of information-theoretic PPML frame-
works is their quadratic communication complexity in the
number of users. This is due to the fact that interpolating
a polynomial f of degree deg(f) requires collecting the
computation results from at least N > deg(f) + 1 users. On
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the other hand, the polynomial degree grows exponentially
with each multiplicative operation (associated with gradient
computations), causing a degree explosion after only a few
training rounds, where the total number of users will no longer
be sufficient to recover the final model. To reduce the poly-
nomial degree (without breaching privacy), users then need to
carry out an expensive degree reduction protocol, which incurs
a quadratic communication overhead, preventing scalability to
larger networks. As a result, current large-scale PPML applica-
tions (beyond 3-4 users) with end-to-end information-theoretic
privacy guarantees (users learn no information beyond the final
model) can apply only to simpler logistic and linear regression
tasks, as opposed to more complex neural network training.

Contributions. To address this challenge, in this work we
introduce CLOVER (ColLabOrative priVate nEural network
tRaining), the first information-theoretic PPML framework
with linear communication complexity, for neural network
training. The key ingredient of CLOVER is a highly efficient
novel degree reduction mechanism for LCC, which reduces the
quadratic communication overhead to linear, without compro-
mising privacy. To do so, we separate communication into on-
line (data-dependent) and offline (data-agnostic) components.
The former depends on the data, and can only be carried out
after training starts, whereas the latter is independent from
data (e.g., randomness generation), and can be carried out in
advance when network load is low. In doing so, we offload the
communication-intensive operations (with quadratic overhead)
to the offline phase, by trading off the quadratic (point-to-
point) communication with linear (broadcast). Then, in the
offline phase, we introduce a novel randomness generation
mechanism for LCC, where the total number of variables
communicated is inversely proportional to the number of users,
achieving a linear (amortized) communication complexity.

In our theoretical analysis, we demonstrate the formal
information-theoretic privacy guarantees of CLOVER, as well
as the key performance trade-offs in terms of the commu-
nication complexity, robustness against user dropouts, and
adversary resilience. In a network of N users, we show that
CLOVER achieves an O(N) (linear) communication com-
plexity both offline and online (for neural network training),
as opposed to the O(N?) (quadratic) online communication
complexity of the state of the art (which, as a result, is limited
to simpler logistic/linear regression, as opposed to neural
networks) [11], while achieving equal adversary and dropout
resilience. Our contributions are summarized as follows:
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o We propose CLOVER, the first privacy-preserving multi-
party neural network training framework with lin-
ear communication complexity, under strong end-to-end
information-theoretic privacy guarantees.

« We introduce the first degree reduction mechanism for
LCC with linear communication complexity, which can
open up further research in a broad range of privacy-
preserving iterative algorithms.

o We present the formal information-theoretic privacy guar-
antees for end-to-end neural network training, and show
that CLOVER cuts the communication overhead while
achieving equal adversary resilience, model accuracy, and
robustness to user dropouts as the state-of-the-art.

Related work. Beyond coded computing, there are three com-
plementary approaches to PPML. Secure Multi-party Com-
puting is a cryptographic PPML framework that injects (re-
versible) randomness to sensitive data before training [2]-[9].
Their main challenge is the extensive communication required
between the users, which limits scalability beyond 2 — 4
users. Differential Privacy (DP) protects privacy by injecting
(irreversible) noise during training, so that an adversary cannot
backtrack an individual’s data from the final model [13]-
[20]. DP has an inherent accuracy-privacy trade-off; stronger
privacy requires a higher noise level. It was shown recently that
DP can also be integrated with information-theoretic PPML, to
reduce the DP noise in distributed settings [21]-[23]. Though
beyond our current scope, we note this as an interesting future
direction. Homomorphic Encryption performs computations
on encrypted data [24]-[34]. Stronger privacy requires larger
encrypted data, increasing the computation load per user.

II. PROBLEM FORMULATION

Multi-party Neural Network Training. We consider a
network of N users. User ¢ holds a local dataset represented
by a matrix X; of size d X m;, where m; and d denote
the number of data points and features, respectively. The
corresponding labels are represented by a binary matrix Y;
of size ¢ x m; for i € [N], where the k*" column is the one-
hot label vector for data point k& € [m;], and ¢ is the number
of classes. The dataset and labels across the entire network are
denoted by X £ (Xy,...,Xy)and Y £ (Yy,...,Yn). The
communication topology is decentralized (without a central
server) as illustrated in Fig. 1. We consider a polynomial
neural architecture [35]-[37], and use quadratic activations
along with a mean-squared error loss. The goal is to learn
a model W to minimize the empirical loss function:

1 1
ooy Z LIW;xi,y:) = oo Z 1f(xi, W) =will5 (D)
i€[m] i€[m]

where m £ > ie(n) Mi» and f(x;, W) is the output of a feed-
forward neural network consisting of L hidden layers, and a
final classification layer (layer L + 1) as shown in Fig. 2,
at a single data point x; with label y; (i** column of X and
Y). The model parameters connecting layer [ —1 to layer [ are
given by a matrix W of size d; xd;_1, where d; is the number
of neurons at layer [ € [L + 1], and W = (W1 ... 'WE+HL)
Accordingly, dy = d, and dj4+1 = c. Training is done via
gradient descent, where the model is updated iteratively as,

User 1 D user dropouts

. User i
N
—
- EE
/local dataset: X
encoded dataset: X;

encoded model: VVL

t T colluding users t

Fig. 1. Collaborative learning model. The multi-party learning setup of
CLOVER. User i € [N] holds a local dataset X;, along with an encoded
dataset X; and encoded model W = (W1,... , WL+1)

Ui
W(t+1)=W(t)—— igﬂ VL(W(1)ixi,yi) ()
where VL(W (t);x;,y;) is the gradient for a single data point,
W (t) is the estimated model parameters from training round
t. Up to D users may drop out at each training round (e.g.,
due to poor channel conditions or device unavailability).
Threat Model. We consider an honest-but curious adversary
model [1], [6], [7], [11], in which adversaries follow the
protocol but try to obtain further information about the local
datasets of honest users. Up to T are adversarial, who may
collude with each other. The set of adversarial and honest
users are denoted by 7 and H.

Information-theoretic Privacy. Our goal is end-to-end
information-theoretic privacy, where adversaries learn no in-
formation about the local datasets of honest users, beyond the
final model [1], [10], [11]. Formally, this can be stated as,

T{X, Yk M7 {Xi, Yitier, W(J)) =0 (3)

for any 7 such that |T| < T, where J is the total number
of training rounds, and My denotes the collection of all
messages received or generated by the adversaries. Similar to
[11], our framework is bound to finite field operations, where
the datasets are represented in a finite field IF, of integers
modulo a large prime p.

Main Problem. The state-of-the-art for PPML under (3) is
the COPML framework [11], which leverages LCC [10] to
partition the dataset X into K equal-sized shards, and encodes
them using a Lagrange interpolation polynomial along with T’
random matrices. Each user then obtains an encoded dataset
X, whose size is only (1/K)* of X. Training is performed
on the coded datasets, from which the final model W (.J) can
be recovered as long as N > D+(deg f)(K+71—1)+1, where
deg f quantifies the polynomial degree after J training rounds.
K quantifies the degree of parallelization; each user needs to
process only (1/K)" of the dataset X, hence as the network
size N grows, one can select a larger K for faster training. On
the other hand, deg f grows exponentially after each multipli-
cation operation (associated with gradient computations). To
prevent a degree explosion, users have to perform an expensive
degree reduction operation with a quadratic communication
overhead after each training round. As a result, COPML can
only be applied to simpler logistic/linear regression models, as
opposed to more complex neural network training. Our goal
is to address this challenge, where we ask the question,
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e How can we train a neural network to solve (1)
with linear communication complexity, under multi-round
information-theoretic privacy guarantees from (3)?

Double Lagrange Coding. To address this challenge, we
propose CLOVER, a privacy-preserving neural network train-
ing framework with linear communication complexity. Our
key contribution is a novel degree reduction mechanism with
linear communication complexity, as opposed to the quadratic
state-of-the-art. At the outset, this mechanism generates two
Lagrange polynomials, a higher degree polynomial used to
decode a masked version of the true computations (while keep-
ing their true values hidden), and a lower degree polynomial
to re-encode them. In doing so, we decouple communication
into online and offline phases, and offload the communication-
intensive operations to the latter. We then propose an efficient
offline randomness generation mechanism where the commu-
nication volume is inversely proportional to the number of
users, through which we reduce the overall communication
overhead (both online and offline) from quadratic to linear.
We next describe the individual steps of CLOVER.

III. THE CLOVER FRAMEWORK

CLOVER consists of four key components described below.
1. Dataset Encoding. Users first agree on N+ K + T distinct
public parameters {a;} ey, {Bj}jeix+m) from Fy. Useri €

[N] then partitions its local dataset X; = (X;1,...,XiKx)
into K submatrices of size d x ‘%, and generates a Lagrange
polynomial of degree K + 71 — 1:
2 —
EED IR TN | I _%
kelK]  le[K+TN\{k} &
K+T 2 - B,
+ > vae ] =5 @
k=K+1  le[K+T\{k} " F 7

where u;(8r) = Xy for k € [K], and {Vz‘k}ng}?ﬂ are
uniformly random matrices from [F,. Then, user i sends
5{”— £ u;(ay) to user j € [N]. Finally, user i obtains the
encoded dataset by concatenating the received {Xﬁ} FE[N]:

ii £ (th . ,)N(Ni) S sz% (5)

The goal of dataset encoding is two-fold: 1) hide its content
against adversaries, 2) reduce the size of data processed during
training; each user computes the gradient on an encoded
dataset X;, whose size is (1/K)*" of the original dataset X.
As the network size N increases, one can select a larger K,
reducing the computation load per-user, speeding up training.
2. Label Encoding. Similarly, user ¢ € [N] encodes the labels
by partitioning Y; = (Y1,..., Y;x) into K submatrices of

size ¢ x ‘g, and generating a Lagrange polynomial:
vi(2) & Y; 2 b
;. kezu:q kle[KpT]\{k} Pu =P
K+T 2 — B,
+ > Uk ][] 5—5 ©
k=K+1  le[K+T\{k} " F 7l

L hidden layers

layer [—1 l
Y 1 - mdixd;
VViE]Fqlx 1-1

input layer (M () ()

output layer

0L S SCE, X
A %
4«\{.@‘2\%//,12“}.%{{\1/}‘-
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Fig. 2. Neural architecture. The neural network consists of an input layer,

L hidden layers, and an output (classification) layer. The encoded model

parameters connecting layer [ — 1 to layer [ is given by VVﬁ eF gl Xdi—1 for

user ¢ € [N], where d; is the number of neurons at layer [.

where {U; }17, ; are uniformly random matrices, and sends
Y., = vi(a;) to user j € [N]. Finally, user i obtains the
encoded labels by concatenating the received {Y i} c[n:

?i £ (?11,,?]\71) S F;X% 7

3. Model Initialization. To preserve the privacy of intermedi-
ate computations, the model W (¢) = (W1(t),... WItl(t))
at time ¢ = 0 should be initialized without revealing its true
value to any user. To do so, users first agree on N — T
distinct public parameters Aq,...,Ay_7 from [F,. Then,
user ¢ € [N] generates 7' + 1 uniformly random matrices
Wé(O),{Uik}ke{KHW)KJFT} of size N‘ﬁT x d;_y1, forms a
degree K + T — 1 Lagrange polynomial,

MO LD | -

ke[K]I€[K+T\{k} B — B

s
+ > uw I3 _ﬂ/; (8)
ke{K+1, .. K+T}  le[K+T\{k} " F "
and sends an encoded vector Wﬁj(()) = ¢;(¢j) to user

j € [N]. After receiving WZM(O), ooy W4(0), user i € [N]
generates a (larger dimensional) coded matrix of size d; xd;_1,

N o o L
WHO)=( D MTIWLO) - D> A WL(0)T)
JE[N] JE[N]

where the (randomly) initialized model is given by,

- o T
WHOIE (D MTWHO), - D A WHO))
JE[N] JEIN]
whose true value is hidden by the 7" random matrices,

Vi (SN, S MU for ke 7.
JE[N] JE[N]

The key intuition is that, to generate a coded matrix of size
d; X d;_1, each user only sends a matrix of size ﬁ X dj_1
(which required a matrix of d; x d;—; in [11]). The final coded
matrix is then generated by combining the lower-dimensional
coded matrices. This stage is independent from data, thus can
be carried out fully offline.

4. Gradient Computing and Model Update. Using the
encoded datasets, users then compute the gradient and update
the model. Note that from (4), each coded data point (a single
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column of )NQ) encodes K true data points (K columns of X).
We next present the gradient computation for a single coded
data point denoted by X;;, and label yy;, which correspond to
column b € [%] of X; and Y; respectively, at a single training
round. For simplicity, we omit the round index ¢.

Gradient computation. Let z' and u' denote the input and
output of the activation function at layer [, respectively, as
illustrated in Fig. 2. Then, z' = W'u!~! for [ € [L + 1], and
u! = g(z!) for I € [L], where g(-) is a quadratic activation
function applied element-wise. Then, gradient computations
consist of the following forward/backward propagation steps.

(Forward Propagation): User i € [N] initially computes,
72 Wéﬁfl € Fgl“ for each layer I € [L+ 1], (9)

where 1) £ X;;. Note that X;; corresponds to (evaluations of)

a degree K +71 — 1 polynomial, on the other hand, the degree
of the resulting polynomial in (9) grows exponentially as the
number of layers increase, which requires users to reduce the
polynomial degree without breaching privacy. To address this,
we introduce a novel degree reduction mechanism ¢(-),

(21,....2y) < 6(Z1,... . Zy) (10)
as will be detailed in Section IV. At the end of (10), each user

i € [N] receives an updated coded vector z. corresponding to
a Lagrange polynomial with degree K + 7T — 1, and computes,

al) = g(@). (11)

(Backward Propagation): Gradients are computed via back-
propagation using the encoded dataset and labels. The com-
putations are the same as conventional backpropagation [36],
where user i € [N] locally computes,
20z, — y)

N %

0= {Zdiag(if-) X (WHDT x g+t
such that diag(-) is a diagonal matrix where the j*" diagonal
is equal to the j* element of z!. The key challenge is that,
except for [ = L+1, (12) corresponds to a high degree (degree
3(K +T —1)) polynomial. To reduce the degree back to K +
T — 1, users need to carry out a degree reduction operation,

(8%,...,0%) « o(dt,...,0%) (13)

after evaluating (12) for each layer /[ € [L]. At the end of
(13), each user i € [N] receives a new coded vector &
corresponding to a Lagrange polynomial of degree K +7 —1.
Then, each user i can compute the gradient of W' as,

Gi 2ol " eFdt  vie[L+1]

ifl=L+1
otherwise

12)

(14)

Model Update. After computing the gradients, users update
the model according to (2). Note that (14) can be viewed as
an evaluation of a degree 3(K + T — 1) polynomial r(a)
such that 7} (a;) = G, whereas 7! (8x) for k € [K] refer to
the true gradients from K data points. On the other hand,
(2) requires the sum gradient ..\, VL(W(t);x;,y:) =
2 be[m/ K] ke[K] 7! (Bk)- In principle, one can collect the eval-
uations from at any set of 3(X +7 —1)+1 users to interpolate
() and decode the true gradients 7! (8), then sum them
up. However, revealing the gradients can breach the privacy

of local datasets [38]. To address this, we propose a privacy-
preserving model update mechanism with linear communica-
tion complexity (significantly improving the quadratic state-of-
the-art [11]). The key intuition is to decode a masked version
of the K true gradients for each coded gradient (where the
true gradient is hidden by additive random masks), aggregate
them, and re-encode them with a Lagrange polynomial, while
simultaneously ensuring the cancellation of all additive masks.
At the end, each user i € [N] obtains a coded gradient G that
encodes the sum of all gradients 3 ;¢ () VLW (t);X;,yi)
from the individual data points with a Lagrange polynomial
of degree K +T'—1, using which each user updates the model
as W! « W! — LGl forall [ € [L+1].

Finally, note that » < 1 in (2), whereas CLOVER is
bound to finite field polynomial operations. To handle this,
one can either consider a sufficiently large field size and treat
all computations in the integer domain, or leverage the secure
quantization protocol from [39] to reduce the required field
size [11]. In our theoretical analysis, we consider the former,
whereas we utilize the latter in our experiments.

Final Model Recovery. After J rounds, parties can collect
the coded model W, (J) from any set of K + T users, and
recover the final model W (.J) using polynomial interpolation.

IV. DOUBLE LAGRANGE CODING

We now introduce the details of our new degree reduction
primitive for LCC. At the outset, this operation generates two
Lagrange polynomials; a higher degree polynomial to decode
a masked version of the true gradient computations, and a
lower degree Lagrange polynomial to re-encode them. In doing
so, we leverage an efficient shared randomness generation
mechanism using MDS codes, which incurs only a linear
communication complexity. Accordingly, we will call this
mechanism Double Lagrange Coding.

Consider a polynomial f(-) of degree deg(f) = M for some
M > K+T—1, where f(B1),..., f(Bk) € F$*? represent
the K desired computations (e.g., gradient computations for
K data points) for some dy, ds, and f(c;) is the computation
performed by user ¢ € [N]. The protocol then generates
a new (low-degree) Lagrange polynomial f'(-) of degree
K + T — 1, such that f'(8x) = f(Bk) for all k € [K],
and f'(Bx) € Fd1*9> are uniformly random vectors for all
ke {K+1,...,K +T}. At the end, each user i € [N]
only learns an evaluation point f’(c;), without learning any
information about the true computations {f’(B)}re[x]- As
such, the new (low degree) polynomial preserves the K desired
computation results from the old (higher degree) polynomial,
without revealing any information about their true values.

Our degree reduction mechanism consists of offline (data-
agnostic) and online (data-dependent) phases. The offline
phase is independent from the data, hence can be carried out
in advance when the network load is low. The online phase
depends on data, and should be carried out after training starts.

(Offline) In the offline phase, users agree on M + 1 distinct
public parameters 01,...,0y41 € F), such that 6;, = B for
all k € [K]. Each user ¢ € [N] then generates M + 1 uniformly
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random matrices R;1, ..., R; a1 of size N = X do from [Fy,

and forms a Lagrange polyn0m1a1 of degree M

zZ — 191
Z Rzk H 9[@ — 91

ke[M+1] le[M+1]\{k}

5)

where ;(0;) =
an encoded vector,

R, for all k € [M + 1]. Then, user ¢ sends

Rij 2 ¥;(y) (16)

to user j € [N]. In addition to (15), user ¢ also creates a second
(lower degree) Lagrange polynomial with degree i + 1 — 1,

.
=Y R II 53
kE[K] le[K+T\{k} Z—ﬁ
+ > Qa 5 [; a7
ke{K+1,.. K+T} le[K+T\{k} " F !

dilde .
where Q; € Fp' ™" are generated uniformly random for

ke{K+1,..., K+T}. Then, user i sends an encoded vector,
Ry; = 0i(ay) (18)
to user j € [IN]. After receiving {ﬁjiaﬁji}jE[N]7 user i € [N]

combines them to generate two new Lagrange polynomials,

Roe( Y NRL-L Y MLRL) (9
JE[N] JE[N] 0
Q; — U
= 2
> R I 5= (20)
ke[M+1] le[M+1]\{k}
— T . _A\T
R 2 (Y MR Y MR e
JE[N] jG[N]B
oG —
- Z R H Br *5lz
le[K+T)\{k} 5
i Ml
+ > Q] m—/ﬁ (22)
ke{K+1,....K+T} le[K+TN\{k}
where R, £ (Z]e[z\/] Aj_leT' Z;e[N] A&_lTRJTk)T’
and Qx = (3, e[N]A Q}ka"' aZ]e[N])‘ TQ R In

doing so, the key motivation is to generate high dlmensmnal
shared randomness using a lower dimensional random poly-
nomial generated by each user. Specifically, the dimension of
the random vectors generated (and embedded in a Lagrange
polynomial) by each user has size NdjT X dg, whereas the size
of the random vectors embedded in the Lagrange polynomials
from (19) and (21) both have size d; x ds.

(Online) In the online phase, each user i € [IN] broadcasts

f(a;) —R,, which can be viewed as an evaluation of a degree

M monomial h(z) = f(z) —(z) at point z = a;, where
hew) = fai) — (o) = flai) — Ry Vi € [N], (23)
h(Br) = f(Bk) = ¥(Bk) = f(Br) —Rx  Vk € [K] (24)

such that the desired computations f((y) are hidden by an
additive random mask Ry = (), where

Z—@l
Z Ry H . — 0

ke[M+1] le[M+1\{k} o

(25)

Then, after receiving h(c;) from a set Z of at least |Z| > M +1
users, every user can interpolate the polynomial h(z), and
compute h(Sx) = f(Bk) — ¥(Bk) for all k € [K]. Finally,
each user ¢ € [N] re-encodes the desired computations
{f(Br) }re[x) With a degree K 4T — 1 Lagrange polynomial,

flaa)y =Y nBy) 11 5 gl R, (26

KE[K] kelK+T\{k} " F

oy —
= Z J(Br) H 3 _gl
ke[K] ke[K+T)\{k} K — P
Q; —
+ > vi ] 3 _gl Q7
ke{K+1,.. . K+T}  le[K+T)\{k} F "7

V. THEORETICAL ANALYSIS

We now present the formal privacy and complexity guaran-
tees of CLOVER.

Theorem 1. (Information-theoretic privacy) CLOVER guar-
antees information theoretic privacy:

T({Xi, Yitiew; MT{Xi, Yitier, W(J)) =0 (28)
against any set T of |T|<T adversaries, where M is the
collection of all messages received/generated by adversaries.

In the sequel, we let m; =/ for all ¢ € [N], to present the
complexity explicitly with respect to the number of users.

Theorem 2. (Communication complexity) The per-
user  communication — complexity of CLOVER s
O(M + INT > e 1) didi—1) in the online phase,

and O((N T)K Zle (L+1) did;—1) in the offline phase,
respectively. With T = O(N) and K = ©O(N), the total
communication complexity across all N users (including both
online and offline phases) is linear in the number of users,

which is O(N(d + c)m + NJm e (p 1) didi-1).

The recovery threshold is defined as the minimum number
of users required to correctly decode the final model.

Theorem 3. (Recovery threshold) The recovery threshold of
CLOVER is N>D+3(K+T—-1)+ 1.

Proof. The recovery threshold is determined by the minimum
number of local computations required for polynomial interpo-
lation, which is N—D > 3(K+T—1)+1 from Section III. J

The recovery threshold of COPML is N > D+ (2r+1)(K+
T—1)4+1, r > 1 [11], hence CLOVER provides equal ad-
versary tolerance 7', dropout resilience D, and parallelization
gain K, while also cutting the communication cost.

VI. CONCLUSION

This work presents CLOVER, the first collaborative PPML
framework with linear communication complexity, under the
information-theoretic privacy setting. CLOVER significantly
reduces the communication overhead of the state-of-the-art,
while achieving equal adversary and dropout resilience.
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