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Abstract—Collaborative machine learning enables privacy-
preserving training of machine learning models without collecting
sensitive client data. Despite recent breakthroughs, communica-
tion bottleneck is still a major challenge against its scalability
to larger networks. To address this challenge, in this work
we propose PICO, the first collaborative learning framework
with linear communication complexity, significantly improving
over the quadratic state-of-the-art, under formal information-
theoretic privacy guarantees. Theoretical analysis demonstrates
that PICO slashes the communication cost while achieving equal
computational complexity, adversary resilience, robustness to
client dropouts, and model accuracy to the state-of-the-art.
Extensive experiments demonstrate up to 91× reduction in the
communication overhead, and up to 8× speed-up in the wall-clock
training time compared to the state-of-the-art. As such, PICO
addresses a key technical challenge in multi-party collaborative
learning, paving the way for future large-scale privacy-preserving
learning frameworks.

Index Terms—Coded computing, distributed training, collab-
orative machine learning, information-theoretic privacy.

I. INTRODUCTION

Privacy-preserving collaborative machine learning (PPML)
allows multiple data owners to collaborate to train ML models
without sharing their data. PPML can greatly improve ML
performance by increasing the volume and diversity of data,
without compromising privacy [2], [3]. It can even foster
novel applications in which data is rare and collaboration has
traditionally been limited due to privacy concerns, such as the
treatment of rare diseases [4], [5].

Recently, coding-theoretic approaches have shown promis-
ing performance gains in the design of PPML [6]–[8]. This
approach, known as Lagrange Coded Computing (LCC),
encodes the local datasets using a Lagrange interpolation
polynomial, prior to training. The encoding operation injects
randomness and (computational) redundancy within the local
computations, to provide strong information-theoretic privacy
guarantees and resilience to client dropouts, while also reduc-
ing the training load per client. Training is then performed
on the encoded data, as if they were performed on the clear
data. After multiple training rounds, the final model is decoded
using polynomial interpolation, by collecting the computations
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(performed over encoded data) from individual clients. By
doing so, an order-of-magnitude speed-up can be achieved in
the training time compared to state-of-the-art cryptographic
baselines, where for the latter the training load per client is as
large as centralized training (over the collection of all client
datasets) [7].

The major challenge against the scalability of information-
theoretic PPML is the communication complexity, which is
quadratic in the number of clients. This is caused by the mul-
tiplication operations associated with gradient computations.
Specifically, interpolating a polynomial 𝑓 of degree deg( 𝑓 )
requires collecting at least deg( 𝑓 ) + 1 interpolation points.
As such, decoding the final model from the local compu-
tations requires computations to be collected from at least
𝑁 ≥ deg( 𝑓 ) + 1 clients. On the other hand, the multiplication
operations during gradient computations lead to an exponential
growth in the polynomial degree, leading to a degree explosion
after a few training rounds. This necessitates an expensive de-
gree reduction step with a quadratic communication overhead
(after each round), preventing scalability to large networks.

To address this challenge, in this work we propose PICO1,
the first information-theoretic PPML framework with linear
communication complexity. Our focus is on logistic regression,
a widely used machine learning mechanism due to its practi-
cality and interpretability [9]. Although logistic regression has
a long history in PPML dating back to [10]–[12], enabling
communication-efficient and scalable mechanisms for large-
scale networks is still an open problem. The key intuition be-
hind PICO is an online-offline communication trade-off com-
bined with an efficient offline randomness generation mecha-
nism. In particular, we first trade-off expensive online (data-
dependent) communications with offline (data-agnostic) com-
munications. The online phase trades-off the quadratic point-
to-point communication overhead with a broadcast mechanism
with linear overhead. Our key contribution is a coded effi-
cient randomness generation mechanism for the offline phase.
In particular, we then develop a coded layered randomness
generation mechanism for the offline phase, that builds on
MDS (Maximum Distance Separable) matrices (also related
to hyperinvertible matrices [13]) and Lagrange codes, and
reduces the quadratic offline communication overhead to lin-
ear, by reducing the volume of variables communicated by
each client; communicating each variable has a quadratic cost,
but the total number of variables scales inversely with the
number of clients, leading to a linear amortized overhead.
As such, in a network of 𝑁 clients, PICO incurs an 𝑂 (𝑁)

1PICO stands for privacy-preserving collaborative learning.
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communication complexity both offline and online, as opposed
to the 𝑂 (𝑁2) online communication complexity of the state-
of-the-art. A major contribution of our work is ensuring
equal adversary-tolerance, dropout-resilience to the state-of-
the-art, and computational complexity, while reducing the
communication overhead.

Our theoretical analysis provides formal guarantees for
information-theoretic privacy, correctness, and key perfor-
mance trade-offs in terms of the communication and com-
putation complexity, adversary resilience, client dropouts, and
training time. We perform extensive experiments to evaluate
the performance of PICO, by implementing a distributed
multi-client network for various image classification tasks.
We then demonstrate the communication/computation volume
and the wall-clock training time of PICO with respect to
state-of-the-art benchmarks, identify the impact of key system
parameters and trade-offs, and present the model convergence
and accuracy.

Our contributions can be summarized as follows:
• We introduce PICO, the first privacy-preserving collab-

orative learning framework with linear communication
complexity (both online and offline), under strong end-
to-end information-theoretic privacy guarantees.

• We demonstrate a novel offline (data-agnostic) coded
randomness generation mechanism for privacy-preserving
logistic regression, which can reduce the amortized com-
munication complexity to linear in the number of users.

• Our theoretical analysis presents formal information-
theoretic privacy guarantees (for end-to-end training), and
shows that PICO cuts the communication overhead while
achieving the same computation complexity, adversary
resilience, robustness to client dropouts, and model ac-
curacy of the state-of-the-art.

• Our experiments demonstrate up to 91× reduction in
the communication overhead, and up to 8× speed-up in
the wall-clock training time compared to the state-of-
the-art, while achieving the same adversary and dropout
resilience, and model accuracy.

II. RELATED WORK

In addition to coded computing, there are several other
techniques that are commonly employed for PPML. A popular
approach is Secure Multi-Party Computing (MPC) [13]–[16],
which allows parties to compute a function over their inputs
without revealing their inputs in the clear [10], [17]–[20].
Secure MPC protocols often rely on a cryptographic primitive
known as secret sharing, where clients locally add local ran-
domness to their datasets prior sharing them with others [21].
Then, training is carried out using the secret shared datasets
(as opposed to the true datasets). The injected randomness is
reversible, i.e., parties can decode the computations performed
on the secret shared data to recover the true computation
results, preserving model accuracy. Secure MPC can provide
strong information-theoretic privacy guarantees, such that no
information about the datasets is revealed beyond the final
model (even if adversaries have unbounded computational
power) [2]. The major challenge is the extensive communi-

cation required to perform secure computations between the
parties, which limits scalability in larger networks.

In addition to the secret sharing-based mechanisms, there
are notable MPC mechanisms that are not based on secret
sharing, including the well-known Yao’s garbled circuits [22]
and its modern variants [23]–[30]. Recent works also con-
sider computationally secure MPC mechanisms by utilizing
homomorphic encryption principles [11], [31]–[36]. Combin-
ing secure MPC with homomorphic encryption can further
trade-off the communication and computation complexity of
MPC protocols, as communication is a major bottleneck in
large-scale applications [37]. For a comparative study of
modern MPC frameworks, including the benefits and trade-
offs of hybrid and mixed-protocol mechanisms, we refer
to [38]. Recently, MPC mechanisms have also been used
for aggregating the local user updates (e.g., local models
or gradients) in distributed and federated learning, which is
known as secure aggregation, where parties learn the sum of
client models/gradients after each (global) training round, but
without observing the individual models/gradients [39]–[42].
In contrast, our focus in this work is on end-to-end PPML,
where parties can learn only the final model (after multiple
training rounds), and no intermediate model/gradient should
be revealed during training.

Homomorphic encryption (HE) mechanisms enable the ex-
ecution of computations on encrypted data in scenarios where
adversaries possess limited computational capabilities [12],
[43]–[52]. Such mechanisms can withstand a larger number
of adversaries, surpassing what secure MPC protocols can
handle. However, the level of privacy hinges on the size of the
encrypted data; stronger guarantees require larger encrypted
data sizes (in contrast to MPC, where the size of the secret
shared data remains consistent), consequently increasing the
computational overhead for the clients. As a result, HE finds
more common use in the inference stage of machine learn-
ing tasks, as opposed to the more computationally intensive
training phase.

Finally, differential privacy (DP) mechanisms protect the
privacy of local datasets by injecting noise to local computa-
tions during training. By doing so, DP prevents information
leakage from the final released model also, as opposed to
secure MPC and HE protocols where the final model is
released as is [53]–[60]. The privacy guarantees are controlled
by the level of noise introduced during training, leading to an
accuracy-privacy trade-off. The main challenge in distributed
settings is the accumulation of noise as the number of users
grow, which degrades models accuracy. To address this, DP
mechanisms are recently combined with secure MPC pro-
tocols, which can improve model accuracy by reducing the
amount of noise introduced by each client [61]–[63]. While
beyond our current scope, we note that our methods can also
be integrated with DP as an interesting future direction.

Notation. In the following, 𝑥 is a scalar, x is a vector,
and X is a matrix. A set is represented by X with cardinality
|X|. tr(X) denotes the trace of matrix X, whereas XT is the
matrix transpose, and ⊗ denotes the Kronecker product. [𝑁]
represents the set {1, . . . , 𝑁}, and b𝑥c denotes the largest
integer less than or equal to 𝑥. Finally, [𝑥]𝑖 denotes a share
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of a secret 𝑥 at client 𝑖 ∈ [𝑁]. All secret shares are generated
by using Shamir’s 𝑇-out-of-𝑁 Secret Sharing (SSS), which
embeds the secret in a degree 𝑇 random polynomial, such that
the secret can be reconstructed from any set of 𝑇 + 1 shares,
but any set of at most 𝑇 shares reveals no information about
the secret. For the details, we refer to [21]. The remainder
of the paper is organized as follows. Section III provides
the system model, whereas Section IV presents the potential
approaches, limitations, and main results. Section V introduces
our framework PICO, whereas Section VI provides a moti-
vating example. Section VII presents the theoretical results,
and Section VIII demonstrates the experiments. Section IX
concludes the paper.

III. PROBLEM FORMULATION

In this work, our focus is on collaborative logistic regression
with 𝑁 clients. Client 𝑖 holds a local dataset X𝑖 ∈ R𝑚𝑖×𝑑
consisting of 𝑚𝑖 data points (where each data point has 𝑑

features), along with the corresponding labels y𝑖 ∈ {0, 1}𝑚𝑖 .
The collection of all local datasets is represented by a ma-
trix X =

[
XT

1 . . . XT
𝑁

]T ∈ R𝑚×𝑑 consisting of 𝑚 ,∑𝑁
𝑖=1 𝑚𝑖 data points, along with the corresponding labels

y =
[
yT

1 . . . yT
𝑁

]T ∈ {0, 1}𝑚×1. The goal is to train a
logistic regression model w jointly over the collective dataset
X, by minimizing a binary cross entropy loss function:

L(w) = 1
𝑚

𝑚∑︁
𝑖=1

(
− 𝑦𝑖 log 𝑔(x𝑖×w) − (1− 𝑦𝑖) log(1−𝑔(x𝑖×w))

)
(1)

where 𝑔(x𝑖 ×w) , 1/(1+ 𝑒−x𝑖×w) ∈ (0, 1) denotes the sigmoid
function, which quantifies the probability of label 𝑖 being equal
to 1, and x𝑖 ∈ R1×𝑑 denotes the 𝑖𝑡ℎ row of X (features of data
point 𝑖). The model is then trained via gradient descent,

w(𝑡+1) = w(𝑡) − [

𝑚
X𝑇 (𝑔(X × w(𝑡) ) − y)

= w(𝑡) − [

𝑚

𝑚∑︁
𝑖=1

xT
𝑖 (𝑔(x𝑖 × w(𝑡) ) − 𝑦𝑖) (2)

where w(𝑡) is the estimated model parameters at training round
𝑡, [ is the learning rate, and function 𝑔(·) is applied element-
wise. We consider a decentralized communication topology,
where clients can communicate through point-to-point unicast
or (one-to-many) broadcast links. At each training round, up
to 𝐷 clients may drop out from the system due to various
reasons such as poor connectivity or device unavailability. We
do not assume the existence of a trusted third party or a central
coordinator. Our system model is presented in Fig. 1.

Remark 1. The binary cross entropy loss (also known as
the logistic loss), which fits the model parameters w through
a maximum likelihood principle, where minimizing the loss
function L(w) corresponds to maximizing the conditional
likelihood of the labels given the features [9, Section 4.4.1],
is a widely used loss function in practice [64]. For the binary
classification task (to predict one of two classes 0 or 1), this
can be viewed as a convex surrogate of the 0 − 1 loss (to
minimize the number of misclassifications) [65], [66], which
is NP-hard to optimize directly [67], [68]. Depending on the
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<latexit sha1_base64="6xLm1LbvTV8flBaR0UjBCeVWmI8=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiTio8uCG5cV7AOaUCbTSTt0MgnzEELob7hxoYhbf8adf+OkzUKrBwYO59zLPXPClDOlXffLqaytb2xuVbdrO7t7+wf1w6OeSowktEsSnshBiBXlTNCuZprTQSopjkNO++HstvD7j1QqlogHnaU0iPFEsIgRrK3k+zHW0zDKs/noalRvuE13AfSXeCVpQInOqP7pjxNiYio04VipoeemOsix1IxwOq/5RtEUkxme0KGlAsdUBfki8xydWWWMokTaJzRaqD83chwrlcWhnSwyqlWvEP/zhkZHrSBnIjWaCrI8FBmOdIKKAtCYSUo0zyzBRDKbFZEplphoW1PNluCtfvkv6V00veumd3/ZaLfKOqpwAqdwDh7cQBvuoANdIJDCE7zAq2OcZ+fNeV+OVpxy5xh+wfn4BjDtkcE=</latexit>y5

<latexit sha1_base64="i74zp3pWnU8K50q76Ap00Yz9Ejs=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqkxEtMuCG5cV7AM6Q8mkmTY0kxmSjDAM/Q03LhRx68+482/MtLPQ1gOBwzn3ck9OkAiujet+O5WNza3tnepubW//4PCofnzS03GqKOvSWMRqEBDNBJesa7gRbJAoRqJAsH4wuyv8/hNTmsfy0WQJ8yMykTzklBgreV5EzDQI82w+wqN6w226C6B1gkvSgBKdUf3LG8c0jZg0VBCth9hNjJ8TZTgVbF7zUs0SQmdkwoaWShIx7eeLzHN0YZUxCmNlnzRoof7eyEmkdRYFdrLIqFe9QvzPG6YmbPk5l0lqmKTLQ2EqkIlRUQAac8WoEZklhCpusyI6JYpQY2uq2RLw6pfXSe+qiW+a+OG60W6VdVThDM7hEjDcQhvuoQNdoJDAM7zCm5M6L86787EcrTjlzin8gfP5Ayrdkb0=</latexit>y1

<latexit sha1_base64="XUuupqP0xPdxZdhULCMQuF1/56U=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5KIaI8FPXisYD+gDWWz2bRLN9mwO5GWkL/ixYMiXv0j3vw3btsctPXBwOO9GWbm+YngGhzn2yptbG5t75R3K3v7B4dH9nG1o2WqKGtTKaTq+UQzwWPWBg6C9RLFSOQL1vUnt3O/+8SU5jJ+hFnCvIiMYh5ySsBIQ7t6hwfAppDhQMlEpqDzoV1z6s4CeJ24BamhAq2h/TUIJE0jFgMVROu+6yTgZUQBp4LllUGqWULohIxY39CYREx72eL2HJ8bJcChVKZiwAv190RGIq1nkW86IwJjverNxf+8fgphw8t4nKTAYrpcFKYCg8TzIHDAFaMgZoYQqri5FdMxUYSCiatiQnBXX14nncu6e113H65qzUYRRxmdojN0gVx0g5roHrVQG1E0Rc/oFb1ZufVivVsfy9aSVcycoD+wPn8AG8SUeA==</latexit>

D dropouts

<latexit sha1_base64="P3lRpGdgHFC85jN8ZzekXTwHzLc=">AAACDHicbVDLSgMxFM34rPVVdekm2AquyoxIdVlw40oq9AXtUDJppg3NJENyRyxDP8CNv+LGhSJu/QB3/o1pOwttPRA4nHMuN/cEseAGXPfbWVldW9/YzG3lt3d29/YLB4dNoxJNWYMqoXQ7IIYJLlkDOAjWjjUjUSBYKxhdT/3WPdOGK1mHccz8iAwkDzklYKVeodgF9gApkWNcqpewSgCrEJduS5gKziSYCc7blFt2Z8DLxMtIEWWo9Qpf3b6iSWTnqSDGdDw3Bj8lGjgVbJLvJobFhI7IgHUslSRixk9nx0zwqVX6OFTaPgl4pv6eSElkzDgKbDIiMDSL3lT8z+skEF75KZdxAkzS+aIwERgUnjaD+1wzCmJsCaGa279iOiSaULD9TUvwFk9eJs3zslcpe3cXxWolqyOHjtEJOkMeukRVdINqqIEoekTP6BW9OU/Oi/PufMyjK042c4T+wPn8Acn+mX8=</latexit>

any T out of N clients
<latexit sha1_base64="43R5MScNHCinIG0j8YCFhToBbSY=">AAACB3icbVDLSgMxFM3UV62vqktBgkVwVWZEqsuCG5cV7APaUjKZ2zY0kxmSO2IZunPjr7hxoYhbf8Gdf2Om7UJbDwQO55yb5B4/lsKg6347uZXVtfWN/GZha3tnd6+4f9AwUaI51HkkI93ymQEpFNRRoIRWrIGFvoSmP7rO/OY9aCMidYfjGLohGyjRF5yhlXrF4w7CA6b2IpkEQg0oC7I40wLMhBZ6xZJbdqegy8SbkxKZo9YrfnWCiCchKOSSGdP23Bi7KdMouIRJoZMYiBkfsQG0LVUsBNNNp3tM6KlVAtqPtD0K6VT9PZGy0Jhx6NtkyHBoFr1M/M9rJ9i/6qZCxQmC4rOH+omkGNGsFBoIDRzl2BLGtbB/pXzINONou8hK8BZXXiaN87JXKXu3F6VqZV5HnhyRE3JGPHJJquSG1EidcPJInskreXOenBfn3fmYRXPOfOaQ/IHz+QNYjZmO</latexit>

colluding adversaries

<latexit sha1_base64="OZHq2x6qNb09NaI7w+sNSn7vCss=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi2mXBjcsK9gFNKZPppB06mYSZG6GE/oYbF4q49Wfc+TdO2iy09cDA4Zx7uWdOkEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2md7nffeLaiFg94izhg4iOlQgFo2gl348oToIw682H18Nqza27C5B14hWkBgVaw+qXP4pZGnGFTFJj+p6b4CCjGgWTfF7xU8MTyqZ0zPuWKhpxM8gWmefkwiojEsbaPoVkof7eyGhkzCwK7GSe0ax6ufif108xbAwyoZIUuWLLQ2EqCcYkL4CMhOYM5cwSyrSwWQmbUE0Z2poqtgRv9cvrpHNV927q3sN1rdko6ijDGZzDJXhwC024hxa0gUECz/AKb07qvDjvzsdytOQUO6fwB87nD/zzkZ8=</latexit>

X4

<latexit sha1_base64="Z9O9WJ2EkkAaSOLpF+cEPuv/9Aw=">AAAB83icbVDLSsNAFL3xWeur6tLNYBFclURFuyy4cVnBPqApZTK9aYdOJmFmIpTQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5y/3OEyrNY/lopgn2IzqSPOSMGiv5fkTNOAiz7mxwNahU3Zo7B1klXkGqUKA5qHz5w5ilEUrDBNW657mJ6WdUGc4Ezsp+qjGhbEJH2LNU0gh1P5tnnpFzqwxJGCv7pCFz9fdGRiOtp1FgJ/OMetnLxf+8XmrCej/jMkkNSrY4FKaCmJjkBZAhV8iMmFpCmeI2K2FjqigztqayLcFb/vIqaV/WvJua93BdbdSLOkpwCmdwAR7cQgPuoQktYJDAM7zCm5M6L86787EYXXOKnRP4A+fzB/tvkZ4=</latexit>

X3

<latexit sha1_base64="QtE1dhRZy2F8eFeu2FQcMm+B2Q8=">AAAB83icbVDLSsNAFL3xWeur6tLNYBFclaSIdllw47KCfUBTymQ6aYdOJmHmRiihv+HGhSJu/Rl3/o2TNgttPTBwOOde7pkTJFIYdN1vZ2Nza3tnt7RX3j84PDqunJx2TJxqxtsslrHuBdRwKRRvo0DJe4nmNAok7wbTu9zvPnFtRKwecZbwQUTHSoSCUbSS70cUJ0GY9ebD+rBSdWvuAmSdeAWpQoHWsPLlj2KWRlwhk9SYvucmOMioRsEkn5f91PCEsikd876likbcDLJF5jm5tMqIhLG2TyFZqL83MhoZM4sCO5lnNKteLv7n9VMMG4NMqCRFrtjyUJhKgjHJCyAjoTlDObOEMi1sVsImVFOGtqayLcFb/fI66dRr3k3Ne7iuNhtFHSU4hwu4Ag9uoQn30II2MEjgGV7hzUmdF+fd+ViObjjFzhn8gfP5A/nrkZ0=</latexit>

X2

<latexit sha1_base64="FslhHmqiSLqbL6u8p32AttIhbDo=">AAAB83icbVDLSsNAFL3xWeur6tLNYBFclUR8dFlw47KCfUBTymR60w6dTMLMRCihv+HGhSJu/Rl3/o2TNgttPTBwOOde7pkTJIJr47rfztr6xubWdmmnvLu3f3BYOTpu6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWByl/udJ1Sax/LRTBPsR3QkecgZNVby/YiacRBm3dngelCpujV3DrJKvIJUoUBzUPnyhzFLI5SGCap1z3MT08+oMpwJnJX9VGNC2YSOsGeppBHqfjbPPCPnVhmSMFb2SUPm6u+NjEZaT6PATuYZ9bKXi/95vdSE9X7GZZIalGxxKEwFMTHJCyBDrpAZMbWEMsVtVsLGVFFmbE1lW4K3/OVV0r6seTc17+Gq2qgXdZTgFM7gAjy4hQbcQxNawCCBZ3iFNyd1Xpx352MxuuYUOyfwB87nD/53kaA=</latexit>

X5

<latexit sha1_base64="9G6+Te1yfbOJV8zPGXtxRcJsXu8=">AAAB83icbVDLSsNAFL3xWeur6tLNYBFclUREuyy4cSUV7AOaUibTm3boZBJmJkIJ/Q03LhRx68+482+ctFlo64GBwzn3cs+cIBFcG9f9dtbWNza3tks75d29/YPDytFxW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7AST29zvPKHSPJaPZppgP6IjyUPOqLGS70fUjIMw684G94NK1a25c5BV4hWkCgWag8qXP4xZGqE0TFCte56bmH5GleFM4KzspxoTyiZ0hD1LJY1Q97N55hk5t8qQhLGyTxoyV39vZDTSehoFdjLPqJe9XPzP66UmrPczLpPUoGSLQ2EqiIlJXgAZcoXMiKkllClusxI2pooyY2sq2xK85S+vkvZlzbuueQ9X1Ua9qKMEp3AGF+DBDTTgDprQAgYJPMMrvDmp8+K8Ox+L0TWn2DmBP3A+fwAkapG5</latexit>

XN

<latexit sha1_base64="43fPCX5NKTXLabNhiQ2J8lI05eE=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi2mXBjcsK9gFNKJPpTTt0MgkzE6GE/oYbF4q49Wfc+TdO2yy09cDA4Zx7uWdOmAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmGLZZIhLVC6lGwSW2DTcCe6lCGocCu+Hkbu53n1BpnshHM00xiOlI8ogzaqzk+zE14zDKe7OBN6jW3Lq7AFknXkFqUKA1qH75w4RlMUrDBNW677mpCXKqDGcCZxU/05hSNqEj7FsqaYw6yBeZZ+TCKkMSJco+achC/b2R01jraRzayXlGverNxf+8fmaiRpBzmWYGJVseijJBTELmBZAhV8iMmFpCmeI2K2FjqigztqaKLcFb/fI66VzVvZu693BdazaKOspwBudwCR7cQhPuoQVtYJDCM7zCm5M5L86787EcLTnFzin8gfP5A/hnkZw=</latexit>

X1
<latexit sha1_base64="ahPZrjYcBPTdSaTmdSPj4eHk9I0=">AAAB/XicbVDLSgMxFM3UV62v8bFzEyyCqzIjol0W3LisYB/QDiWTSdvQTDIkd8Q6FH/FjQtF3Pof7vwb03YW2nrgwuGce5N7T5gIbsDzvp3Cyura+kZxs7S1vbO75+4fNI1KNWUNqoTS7ZAYJrhkDeAgWDvRjMShYK1wdD31W/dMG67kHYwTFsRkIHmfUwJW6rlHXWAPkAlFicARAfsUTHpu2at4M+Bl4uekjHLUe+5XN1I0jZkEKogxHd9LIMiIBk4Fm5S6qWEJoSMyYB1LJYmZCbLZ9hN8apUI95W2JQHP1N8TGYmNGceh7YwJDM2iNxX/8zop9KtBxmWSApN0/lE/FRgUnkaBI64ZBTG2hFDN7a6YDokmFGxgJRuCv3jyMmmeV/zLin97Ua5V8ziK6BidoDPkoytUQzeojhqIokf0jF7Rm/PkvDjvzse8teDkM4foD5zPHxQYlZk=</latexit>

local dataset
<latexit sha1_base64="N3+L/OgN5AhlHRsDQKJStMqHSCA=">AAAB9XicbVBNS8NAEN34WetX1aOXxSJ4KomI9ljw4rGC/YA2ls120i7dbMLuRC2h/8OLB0W8+l+8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk41hwaPZazbATMghYIGCpTQTjSwKJDQCkbXU7/1ANqIWN3hOAE/YgMlQsEZWum+i/CEmWQBSEMnvVLZrbgz0GXi5aRMctR7pa9uP+ZpBAq5ZMZ0PDdBP2MaBZcwKXZTAwnjIzaAjqWKRWD8bHb1hJ5apU/DWNtSSGfq74mMRcaMo8B2RgyHZtGbiv95nRTDqp8JlaQIis8XhamkGNNpBLQvNHCUY0sY18LeSvmQacbRBlW0IXiLLy+T5nnFu6x4txflWjWPo0COyQk5Ix65IjVyQ+qkQTjR5Jm8kjfn0Xlx3p2PeeuKk88ckT9wPn8AztaSrg==</latexit>

labels

Fig. 1: System model. The multi-client learning setup of PICO. Client 𝑖 ∈
[𝑁 ] holds a dataset X𝑖 with labels y𝑖 . Any set of up to 𝑇 out of 𝑁 clients
may be adversarial. Adversaries may collude with each other.

problem characteristics, alternative loss functions can also be
considered for different tasks, which is an interesting future
direction [69], [70].

Threat model. The most common adversary model in PPML
is honest-but-curious adversaries, which is also the focus of
this work [2]. In this setup, adversaries follow the protocol
truthfully (i.e., do not poison the datasets/messages), but may
attempt to reveal sensitive local datasets of honest clients using
the messages exchanged. Out of 𝑁 clients, any set of up to 𝑇
clients can be adversarial, who may collude with each other.
The adversaries are unknown to the honest clients. The set
of adversarial and honest clients are denoted by T and H =

[𝑁]\{𝑇}, respectively.
Information-theoretic privacy. Our focus is on information-
theoretic privacy, where the goal is to ensure that the ad-
versaries learn no information about the local datasets of
honest clients, beyond the final model [2]. Similar to former
works, our framework is bound to finite field operations, and
in the following we assume that all datasets and labels are
represented in a finite field F𝑞 of integers modulo a large prime
𝑞. For the details of this finite field transformation (which
is handled via a quantization mechanism), we refer to [2],
[7], [8], [39], [40]. In the following, we let X𝑖 ∈ F𝑚𝑖×𝑑𝑞 and
y𝑖 ∈ F

𝑚𝑖×1
𝑞 denote the finite field representation of X𝑖 ∈ R𝑚𝑖×𝑑

and y𝑖 ∈ R𝑚𝑖×1, respectively. Similarly, X ∈ F𝑚×𝑑𝑞 and
y ∈ F𝑚×1

𝑞 denotes the finite field representation of X ∈ R𝑚×𝑑
and y ∈ R𝑚×1. All training computations are then carried out
within F𝑞 . The model parameters are updated in the finite field
throughout the training, and are converted to the real domain
only at the end of training. We let w(𝑡) denote the finite field
model parameters at round 𝑡. At the end of training (after 𝐽
rounds), the final model w(𝐽 ) is decoded in the finite field,
and then converted to the real domain w(𝐽 ) . Accordingly, the
Markov relation,

{X𝑖 , y𝑖}𝑖∈[𝑁 ] − {X𝑖 , y𝑖}𝑖∈[𝑁 ] − w(𝐽 ) − w(𝐽 )

holds between the finite field and real domain representations,
hence from the data processing inequality (DPI) [71], w(𝐽 )
does not carry any further information about the local datasets
than w(𝐽 ) . Then, the information-theoretic privacy condition
can be formally stated as,

𝐼 ({X𝑖 , y𝑖}𝑖∈[𝑁 ]\T ;MT |{X𝑖 , y𝑖}𝑖∈T ,w
(𝐽 ) ) = 0 (3)

for all T such that |T | ≤ 𝑇 , where MT is the collection of
all messages received or generated by the adversaries, and 𝐽
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is the total the number of training rounds.
Main problem. In this work, our goal is to solve (1) with

the information-theoretic guarantees from (3), We then ask the
following question:

• How can we develop a scalable PPML framework to solve
(1) with linear total communication complexity, under the
formal information-theoretic guarantees from (3)?

We next review the potential approaches and challenges to
address this challenge, and introduce our main results.

IV. POTENTIAL APPROACHES, CHALLENGES, AND MAIN
RESULTS

A. COPML (Coded Private Machine Learning)

To solve (1) with the end-to-end information-theoretic guar-
antees from (3), the state-of-the-art is the COPML framework
from [7], which leverages Shamir’s Secret Sharing (SSS)
[21] to encode the datasets and model. For dataset encod-
ing, each client 𝑖 ∈ [𝑁] secret shares its local dataset X𝑖
using SSS, and sends a secret share [X𝑖] 𝑗 to client 𝑗 ∈
[𝑁]. Client 𝑗 concatenates the received shares and partitions

them into 𝐾 equal-sized shards
[
[X1]T𝑗 . . . [X𝑁 ]T𝑗

]T
=[

[X′1]T𝑗 . . . [X′𝐾 ]T𝑗
]T

, then sends an encoded matrix,

[ 𝑓 (𝛼𝑖)] 𝑗 =
∑︁
𝑘∈[𝐾 ]

[X′𝑘 ] 𝑗
∏

𝑙∈[𝐾+𝑇 ]\{𝑘 }

𝛼𝑖 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

+
𝐾+𝑇∑︁
𝑘=𝐾+1

[R𝑘 ] 𝑗
∏

𝑙∈[𝐾+𝑇 ]\{𝑘 }

𝛼𝑖 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

(4)

to client 𝑖 ∈ [𝑁], where {[R𝑘 ] 𝑗 }𝑘∈{𝐾+1,...,𝐾+𝑇 } ∈ F𝑚/𝐾𝑞 are
uniformly random matrices secret shared by a crypto-service
provider. After receiving {[ 𝑓 (𝛼𝑖)] 𝑗 } 𝑗∈[𝑁 ] , client 𝑖 recovers the
encoded dataset X̃𝑖 = 𝑓 (𝛼𝑖) using polynomial interpolation.
For model encoding, at each training round 𝑡, client 𝑗 ∈ [𝑁],
who holds a secret share [w(𝑡) ] 𝑗 of the model w(𝑡) (without
learning its true value), sends an encoded matrix,

[ℎ(𝛼𝑖)] 𝑗 =
∑︁
𝑘∈[𝐾 ]

[w(𝑡) ] 𝑗
∏

𝑙∈[𝐾+𝑇 ]\{𝑘 }

𝛼𝑖 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

+
𝐾+𝑇∑︁
𝑘=𝐾+1

[v(𝑡)
𝑘
]𝑖

∏
𝑙∈[𝐾+𝑇 ]\{𝑘 }

𝛼𝑖 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

(5)

to client 𝑖 ∈ [𝑁], where {[v(𝑡)
𝑘
]𝑖}𝑘∈{𝐾+1,...,𝐾+𝑇 } ∈ F𝑑×1

𝑞 are
uniformly random matrices secret shared by a crypto-service
provider. After receiving {[ℎ(𝛼𝑖)] 𝑗 } 𝑗∈[𝑁 ] , client 𝑖 recovers the
encoded model w̃(𝑡)

𝑖
= ℎ(𝛼𝑖) using polynomial interpolation.

Training is then performed using the encoded datasets and
model. The total online communication overhead is quadratic
𝑂 (𝑁2𝑑) across the 𝑁 clients. Importantly, the polynomial
degree deg ℎ grows after each multiplication operation. To
prevent a degree explosion, a degree reduction step has to
be carried out after each training round, also with a quadratic
overhead, limiting scalability to larger networks.

B. Naive offline-online communication offloading
To address the communication overhead, a potential ap-

proach is to offload the communication-intensive tasks (e.g.,
model encoding) to a data-independent offline phase [72], [73].
To do so, prior to training (offline), each client 𝑖 ∈ [𝑁] can
locally generate a uniformly random mask r(𝑡)

𝑖
∈ F𝑑𝑞 and send

to client 𝑗 ∈ [𝑁]: 1) a secret share [r(𝑡)
𝑖
] 𝑗 ∈ F𝑑𝑞 (e.g., using

SSS), 2) an encoded mask,

r̃(𝑡)
𝑖 𝑗

=
∑︁
𝑘∈[𝐾 ]

r(𝑡)
𝑖

∏
𝑙∈[𝐾+𝑇 ]\{𝑘 }

𝛼 𝑗 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

+
𝐾+𝑇∑︁
𝑘=𝐾+1

v(𝑡)
𝑖𝑘

∏
𝑙∈[𝐾+𝑇 ]\{𝑘 }

𝛼 𝑗 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

, (6)

where {v(𝑡)
𝑖𝑘
}𝑘∈{𝐾+1,...,𝐾+𝑇 } ∈ F𝑑𝑞 are generated uniformly at

random, using which client 𝑗 can obtain: 1) a secret share
[r(𝑡) ] 𝑗 =

∑
𝑖∈[𝑁 ] [r

(𝑡)
𝑖
] 𝑗 , and 2) an encoded mask,

r̃(𝑡)
𝑗

=
∑︁
𝑖∈[𝑁 ]

r̃(𝑡)
𝑖 𝑗

=
∑︁
𝑘∈[𝐾 ]

r(𝑡)
∏

𝑙∈[𝐾+𝑇 ]\{𝑘 }

𝛼 𝑗 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

+
𝐾+𝑇∑︁
𝑘=𝐾+1

( ∑︁
𝑖∈[𝑁 ]

v(𝑡)
𝑖𝑘

) ∏
𝑙∈[𝐾+𝑇 ]\{𝑘 }

𝛼 𝑗 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

, (7)

of a common random mask r(𝑡) =
∑
𝑖∈[𝑁 ] r

(𝑡)
𝑖

shared across
all users (in encoded form), without learning its true value.
The common randomness r(𝑡) encoded by the 𝑇 random
vectors {v(𝑡)

𝑖𝑘
}𝑘∈{𝐾+1,...,𝐾+𝑇 } allows clients to use broadcasting

in the online phase, to reduce the communication overhead
of model encoding from point-to-point quadratic to linear
broadcast. To do so, client 𝑗 ∈ [𝑁] can broadcast a se-
cret share [w(𝑡) ] 𝑗 − [r(𝑡) ] 𝑗 = [w(𝑡) − r(𝑡) ] 𝑗 of the masked
model w(𝑡) − r(𝑡) , where the true model w(𝑡) is hidden
by the random mask r(𝑡) . Using the received shares, each
client 𝑖 ∈ [𝑁] can decode w(𝑡) − r(𝑡) using polynomial
interpolation, and locally generate an encoded model w̃(𝑡)

𝑖
=

r̃(𝑡)
𝑖
+(w(𝑡)−r(𝑡) )∑𝑘∈[𝐾 ]

∏
𝑙∈[𝐾+𝑇 ]\{𝑘 }

𝛼𝑖−𝛽𝑙
𝛽𝑘−𝛽𝑙 . This reduces the

online communication overhead from quadratic 𝑂 (𝑁2𝑑) point-
to-point unicast, to linear 𝑂 (𝑁𝑑) one-to-many broadcast. On
the other hand, the offline communication overhead is still
quadratic 𝑂 (𝑁2𝑑) point-to-point.

C. This work
In this work, we introduce PICO to solve (1) with the end-

to-end information-theoretic guarantees from (3). In contrast to
naive offline-online communication offloading, PICO achieves
linear communication overhead both offline and online. This
is achieved by a coded randomness generation mechanism
using MDS codes to reduce the total number of variables
communicated in the offline phase. Specifically, in the offline
phase, each client 𝑖 ∈ [𝑁] first generates a lower-dimensional
random mask r(𝑡)

𝑖
∈ F

𝑑
𝑁−𝑇
𝑞 uniformly at random, where the

local mask size is reduced to 𝑑
𝑁−𝑇 from 𝑑. Then, client 𝑖 sends

to each client 𝑗 ∈ [𝑁]: 1) a secret share [r(𝑡)
𝑖
] 𝑗 ∈ F

𝑑
𝑁−𝑇
𝑞 , 2) an
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encoded mask r̃(𝑡)
𝑖 𝑗
∈ F

𝑑
𝑁−𝑇
𝑞 as described in (7), however, all

coded masks communicated with the other clients are now of
dimension 𝑑

𝑁−𝑇 as opposed to 𝑑. Using the lower-dimensional

coded random masks {̃r(𝑡)
𝑖 𝑗
, [r𝑖] (𝑡)𝑗 }𝑖∈[𝑁 ] ∈ F

𝑑
𝑁−𝑇
𝑞 , client 𝑗 then

locally generates a large-dimensional encoded mask r̃(𝑡)
𝑗
∈ F𝑑𝑞

of size 𝑑,

r̃(𝑡)
𝑗
, (M ⊗ I) ×


r̃(𝑡)1 𝑗
...

r̃(𝑡)
𝑁 𝑗


=

∑︁
𝑘∈[𝐾 ]

r(𝑡)
∏

𝑙∈[𝐾+𝑇 ]\{𝑘 }

𝛼 𝑗 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

+
𝐾+𝑇∑︁
𝑘=𝐾+1

(M ⊗ I) ×

v(𝑡)1
...

v(𝑡)
𝑁


∏

𝑙∈[𝐾+𝑇 ]\{𝑘 }

𝛼 𝑗 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

, (8)

and a secret share [r] (𝑡)
𝑗
, (M⊗I)×

[
[r(𝑡)1 ]

T
𝑗
· · · [r(𝑡)

𝑁
]T
𝑗

]T
∈

F𝑑𝑞 , corresponding to a common random mask r(𝑡) , (M ⊗
I) ×

[
(r(𝑡)1 )

T · · · (r(𝑡)
𝑁
)T

]T
∈ F𝑑𝑞 of size 𝑑, whose true

value is unknown by the clients, I is a 𝑑
(𝑁−𝑇 )𝐾 ×

𝑑
(𝑁−𝑇 )𝐾

identity matrix, and M is an (𝑁 − 𝑇) × 𝑁 MDS matrix,
as will be detailed later. The key intuition is that, while
the communication overhead for each variable is quadratic
𝑂 (𝑁2) point-to-point (unicast), the total number of coded
variables to be communicated is reduced to 𝑂 ( 𝑑

𝑁−𝑇 ), which
is inversely proportional to the number of clients. Hence, the
overall amortized communication overhead is 𝑂 ( 𝑑𝑁 2

𝑁−𝑇 ) point-
to-point, which is linear 𝑂 (𝑑𝑁) for any 𝑇 = 𝑂 (𝑁). In the
online phase, the offline encoded masks [r(𝑡) ] 𝑗 , r̃(𝑡)𝑗 allows
client 𝑗 to broadcast the secret share [w(𝑡) ] 𝑗 − [r(𝑡) ] 𝑗 =

[w(𝑡) − r(𝑡) ] 𝑗 of the masked model w(𝑡) − r(𝑡) , using which
clients can decode the masked model through polynomial
interpolation, and client 𝑗 can obtain the encoded model
w̃(𝑡)
𝑗

= r̃(𝑡)
𝑗
+ (w(𝑡) − r(𝑡) )∑𝑘∈[𝐾 ]

∏
𝑙∈[𝐾+𝑇 ]\{𝑘 }

𝛼𝑗−𝛽𝑙
𝛽𝑘−𝛽𝑙 . As

a result, communication complexity of the online phase is
reduced from 𝑂 (𝑁2) point-to-point unicast to 𝑂 (𝑁) one-to-
many broadcast. While reducing the communication overhead,
PICO achieves equal dropout-resilience, adversary-tolerance,
and computation complexity to COPML. In doing so, a reliable
broadcasting mechanism is considered [74], which can be
achieved through various approaches in practice, such as using
an inherently broadcast medium such as cellular networks or
satellite links, or through leveraging broadcasting mechanisms
at the hardware level, e.g., IP multicast for local area networks.

V. THE PICO FRAMEWORK

We next describe the details of our framework, which
consists of five main components:

1) Dataset encoding: Clients 𝑖 ∈ [𝑁] encode their local
datasets {X𝑖}𝑖∈[𝑁 ] to preserve their privacy while dis-
tributing the computation load across the clients. At the
end, each client 𝑖 ∈ [𝑁] learns an encoded dataset X̃𝑖 ,
whose size is (1/𝐾)𝑡ℎ of the original dataset X.

offline
5. Gradient computing and model update

pe
r r
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nd
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onlineoffline

3. Model initialization
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2. Label encoding
offline online

1. Dataset encoding
offline online
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Fig. 2: PICO consists of five main components.

2) Label encoding: To preserve the privacy of labels, clients
also encode their local labels using locally generated
random masks. At the end, each client learns an encoded
label.

3) Model initialization: To prevent information leakage from
intermediate training computations, the model w(0) at
round 𝑡 = 0 is initialized uniformly random within F𝑞 ,
but without revealing its true value to any client (and any
collusions between up to 𝑇 clients).

4) Model encoding: To prevent information leakage from
intermediate model parameters, the model at each round
should be kept private from the clients. To that end, at
each training round 𝑡, client 𝑖 ∈ [𝑁] holds a secret share
[w(𝑡) ]𝑖 (as opposed to the true model) of the current state
of the model w(𝑡) , using which the clients encode the
model, to enable training computations to be performed
on the encoded datasets. At the end, client 𝑖 ∈ [𝑁] obtains
an encoded model w̃(𝑡)

𝑖
, without learning any information

about the true model w(𝑡) .
5) Gradient computing and model update: Using the en-

coded datasets and model, clients compute the gradient
and update the model for the next training round, but
without learning the true value of the gradient or the
updated model. In doing so, the key ingredient is a novel
degree reduction mechanism with linear communication
cost, which reduces the degree of the polynomial cor-
responding to the gradients computed on the encoded
datasets and model, to prevent an exponential growth as
the number of training rounds increase.

Table I presents the communication overhead of each compo-
nent of PICO and COPML [7]. The individual components of
PICO comprise of online and offline phases as demonstrated
in Fig. 2. We now describe the details of each component.
For ease of presentation, we describe the offline and online
phases sequentially, to show how the variables generated in
the former are utilized in the latter. We note that each offline
phase is independent from past online/offline phases, hence all
offline phases can be executed in parallel.

A. Dataset Encoding

Initially, clients encode their datasets using locally generated
randomness. The goal of the encoding process is two-fold.
First, it hides the dataset contents against adversaries. Second,
it reduces the size of the data each client should process during
training. The encoding process consists of the following offline
and online phases.
Offline. Clients first agree on 𝑁 + 𝐾 + 𝑇 distinct public
parameters {𝛼 𝑗 } 𝑗∈[𝑁 ] and {𝛽 𝑗 } 𝑗∈[𝐾+𝑇 ] from F𝑞 . Each client
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TABLE I: Comparison of the total communication overhead (across all clients) for PICO (including both online and offline phases), and COPML (online),
where 𝐾 = Θ(𝑁 ) , 𝑇 = 𝑂 (𝑁 ) , and 𝑚𝑖 = 𝑚 for 𝑖 ∈ [𝑁 ].

COPML (online) PICO (offline+online)
1. Dataset encoding 𝑂 (𝑁2𝑑𝑚) 𝑂 (𝑁𝑑𝑚)
2. Label encoding 𝑂 (𝑁2𝑚 + 𝑁2𝑑) 𝑂 (𝑁𝑑)
3. Model initialization 𝑂 (𝑁2𝑑) 𝑂 (𝑁𝑑)
4. Model encoding 𝑂 (𝑁2𝑑𝐽) 𝑂 (𝑁𝑑𝐽)
5. Gradient computing and model update 𝑂 (𝑁2𝑑𝐽) 𝑂 (𝑁𝑑𝐽)

𝑖 ∈ [𝑁] then sends an encoded matrix,

R̃𝑖 𝑗 ,
∑︁
𝑘∈[𝐾 ]

R𝑖𝑘
∏

𝑙∈[𝐾+𝑇 ]\{𝑘 }

𝛼 𝑗 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

+
𝐾+𝑇∑︁
𝑘=𝐾+1

V𝑖𝑘
∏

𝑙∈[𝐾+𝑇 ]\{𝑘 }

𝛼 𝑗 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

(9)

to client 𝑗 ∈ [𝑁], where {R𝑖𝑘 }𝑘∈[𝐾 ] , {V𝑖𝑘 }𝑘∈{𝐾+1,...,𝐾+𝑇 } are
uniformly random matrices of size 𝑚𝑖

𝐾
× 𝑑, generated locally

by client 𝑖.

Online. In the online phase, client 𝑖 ∈ [𝑁] locally
partitions its dataset X𝑖 into 𝐾 equal-sized shards X𝑖 =[
XT
𝑖1 · · · XT

𝑖𝐾

]T
, where X𝑖𝑘 ∈ F

𝑚𝑖
𝐾
×𝑑

𝑞 for all 𝑘 ∈ [𝐾], and
broadcasts,

X̂𝑖𝑘 = X𝑖𝑘 − R𝑖𝑘 ∀𝑘 ∈ [𝐾] . (10)

After receiving {X̂ 𝑗𝑘 } 𝑗∈[𝑁 ],𝑘∈[𝐾 ] , each client 𝑖 ∈ [𝑁] gener-
ates an encoded dataset:

X̃𝑖 ,
∑︁
𝑘∈[𝐾 ]

[
X̂T

1𝑘 · · · X̂T
𝑁 𝑘

]T ∏
𝑙∈[𝐾+𝑇 ]\{𝑘 }

𝛼𝑖 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

+
[
R̃T

1𝑖 · · · R̃T
𝑁𝑖

]T
(11)

Intuitively, the encoding operation from (11) simultaneously
cancels the additive randomness due to {R 𝑗𝑘 }𝑘∈[𝐾 ], 𝑗∈[𝑁 ] ,
and embeds the dataset X in a degree 𝐾 + 𝑇 − 1 Lagrange
polynomial,

𝑓 (𝛼) ,
∑︁
𝑘∈[𝐾 ]

[
XT

1𝑘 · · · XT
𝑁 𝑘

]T ∏
𝑙∈[𝐾+𝑇 ]\{𝑘 }

𝛼 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

+
𝐾+𝑇∑︁
𝑘=𝐾+1

[
VT

1𝑘 · · · VT
𝑁 𝑘

]T ∏
𝑙∈[𝐾+𝑇 ]\{𝑘 }

𝛼 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

(12)

where 𝑓 (𝛽𝑘 ) =
[
XT

1𝑘 · · · XT
𝑁 𝑘

]T
for all 𝑘 ∈ [𝐾], and client

𝑖 ∈ [𝑁] obtains the encoded dataset X̃𝑖 = 𝑓 (𝛼𝑖). The 𝑇 random
matrices

{ [
VT

1𝑘 · · · VT
𝑁 𝑘

]T
}
𝑘∈{𝐾+1,...,𝐾+𝑇 }

along with the

random masks {R𝑖𝑘 }𝑘∈[𝐾 ] allow clients to use (one-to-many)
broadcast while encoding the datasets as opposed to (point-
to-point) unicast in the online phase, while hiding the true
values of the local datasets against up to 𝑇 adversaries. As
will be described later, client 𝑖 then computes the gradient on
the encoded dataset X̃𝑖 , whose size is (1/𝐾)𝑡ℎ of the original
dataset X. As the network size 𝑁 increases, one can select
a larger 𝐾 , reducing the training load per client (called the
parallelization gain) to speed up training.

Remark 2. In practice, if 𝑚𝑖/𝐾 is not an integer, client 𝑖 can
zero-pad their local dataset [75] with synthetic data samples

x𝑖 = 0, by setting all features to 0. As the gradients of such
samples are zero, the pre-processing will not change the final
model. Another approach is for each client to locally create
additional training samples using common data augmentation
mechanisms, such as label-preserving transformations (e.g.,
rotations, horizontal/vertical flips, and random cropping),
which can further improve test accuracy [76], [77].

B. Label Encoding

Clients also encode their labels through the following offline
and online phases.
Offline. Client 𝑗 ∈ [𝑁] generates 𝐾 uniformly random vectors

a 𝑗𝑘 ∈ F
𝑑

(𝑁−𝑇 )𝐾 ×1
𝑞 for 𝑘 ∈ [𝐾], and sends to each client 𝑖 ∈ [𝑁]:

1) a secret share [a 𝑗𝑘 ]𝑖 of a 𝑗𝑘 using SSS, 2) an encoded vector,

ã 𝑗𝑖 =
∑︁
𝑘∈[𝐾 ]

a 𝑗𝑘
∏

𝑙∈[𝐾+𝑇 ]\{𝑘 }

𝛼𝑖 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

+
𝐾+𝑇∑︁
𝑘=𝐾+1

b 𝑗𝑘
∏

𝑙∈[𝐾+𝑇 ]\{𝑘 }

𝛼𝑖 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

(13)

where b 𝑗𝑘 ∈ F
𝑑

𝑁−𝑇
𝑞 are uniformly random vectors for 𝑘 ∈

{𝐾 + 1, . . . , 𝐾 + 𝑇}. By combining {ã 𝑗𝑖 , [a 𝑗𝑘 ]𝑖} 𝑗∈[𝑁 ],𝑘∈[𝐾 ] ,
client 𝑖 then forms a (large-dimensional) encoded vector,

ã𝑖 , (M ⊗ I) ×
[̃
aT

1𝑖 · · · ãT
𝑁𝑖

]T (14)

and a secret share,

[a𝑘 ]𝑖 , (M⊗I)×
[
[a1𝑘 ]T𝑖 · · · [a𝑁 𝑘 ]T𝑖

]T ∀𝑘 ∈ [𝐾], (15)

where a𝑘 , (M ⊗ I) ×
[
aT

1𝑘 · · · aT
𝑁 𝑘

]T, I is a 𝑑
(𝑁−𝑇 )𝐾 ×

𝑑
(𝑁−𝑇 )𝐾 identity matrix, and

M =


1 _1 . . . _𝑁−1

1
...

...
. . .

...

1 _𝑁−𝑇 . . . _𝑁−1
𝑁−𝑇

 (16)

is a (𝑁 − 𝑇) × 𝑁 MDS matrix, where _1, . . . , _𝑁−𝑇 are
distinct public parameters from F𝑞 . The key intuition is that, to
generate an encoded vector of size 𝑑

𝐾
, each client only sends

𝑑
(𝑁−𝑇 )𝐾 parameters to every other client2. The final encoded
vector is then generated by combining the lower-dimensional
encoded vectors received from all 𝑁 clients, using the MDS
matrix M.
Online. In the online phase, client 𝑖 ∈ [𝑁] partitions XT

𝑖 y𝑖
into 𝐾 equal-sized shards XT

𝑖 y𝑖 =
[
yT
𝑖1 . . . yT

𝑖𝐾

]T
, and sends

2Typically 𝑑 � 𝑁 in real-world tasks [78].
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an encoded vector,

ỹ𝑖 𝑗 ,
∑︁
𝑘∈[𝐾 ]

y𝑖𝑘
∏

𝑙∈[𝐾+𝑇 ]\{𝑘 }

𝛼 𝑗 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

+
𝐾+𝑇∑︁
𝑘=𝐾+1

r𝑖𝑘
∏

𝑙∈[𝐾+𝑇 ]\{𝑘 }

𝛼 𝑗 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

(17)

to each client 𝑗 ∈ [𝑁], where r𝑖𝑘 ∈ F
𝑑
𝐾
𝑞 are generated uni-

formly at random. After receiving {ỹ𝑖 𝑗 }𝑖∈[𝑁 ] , client 𝑗 ∈ [𝑁]
broadcasts,

â 𝑗 ,
∑︁
𝑖∈[𝑁 ]

ỹ𝑖 𝑗 − ã 𝑗 (18)

which can be viewed as an evaluation point of a Lagrange
polynomial of degree 𝐾+𝑇−1. Upon receiving â 𝑗 from any set
of at least 𝐾+𝑇 clients, client 𝑖 ∈ [𝑁] decodes

∑
𝑗∈[𝑁 ] y 𝑗𝑘−a𝑘

for all 𝑘 ∈ [𝐾] via polynomial interpolation, and computes a
secret share of XTy =

∑
𝑗∈[𝑁 ] X

T
𝑗 y 𝑗 ,

[XTy]𝑖 ,

(∑ 𝑗∈[𝑁 ] y 𝑗1 − a1 + [a1]𝑖)

...

(∑ 𝑗∈[𝑁 ] y 𝑗𝐾 − a𝐾 + [a𝐾 ]𝑖)

 (19)

C. Model Initialization

Model w(0) at time 𝑡 = 0 is initialized uniformly random
(offline), without revealing its true value to any client. To do
so, client 𝑖 generates a random vector w(0)

𝑖
of size 𝑑

𝑁−𝑇 , and
sends a secret share [w(0)

𝑖
] 𝑗 of w(0)

𝑖
to client 𝑗 ∈ [𝑁] using

SSS. After receiving [w(0)
𝑗
]𝑖 for 𝑗 ∈ [𝑁], each client 𝑖 ∈ [𝑁]

constructs a new (larger) secret share,

[w(0) ]𝑖 , (M ⊗ I) ×
[
( [w(0)1 ]𝑖)

T · · · ( [w(0)
𝑁
]𝑖)T

]T
(20)

which corresponds to a secret share of the initialized model,

w(0) = (M ⊗ I) ×
[
(w(0)1 )

T · · · (w(0)
𝑁
)T

]T
(21)

where I is a 𝑑
𝑁−𝑇 ×

𝑑
𝑁−𝑇 identity matrix.

D. Model Encoding

At the beginning of each round, client 𝑖 holds a secret
share [w(𝑡) ]𝑖 of the current state of the model w(𝑡) . Initially
at 𝑡 = 0, [w(0) ]𝑖 is generated during model initialization as
described in (20). For all other training rounds (i.e., 𝑡 > 0),
[w(𝑡) ]𝑖 is obtained after the model updating stage, which will
be described in (40). At each round, clients then encode the
model w(𝑡) using the secret shares [w(𝑡) ]𝑖 , to enable gradient
computations to be performed on the encoded datasets. At the
end of this stage, each client 𝑖 ∈ [𝑁] learns an encoded model
w̃(𝑡)
𝑖

. Model encoding consists of the following offline and
online phases.
Offline. Client 𝑖 ∈ [𝑁] generates a uniformly random vector
r(𝑡)
𝑖
∈ F

𝑑
𝑁−𝑇
𝑞 , and sends to each client 𝑗 ∈ [𝑁]: 1) a secret

share [r(𝑡)
𝑖
] 𝑗 of r(𝑡)

𝑖
using SSS, and 2) an encoded vector,

r̃(𝑡)
𝑖 𝑗
,

∑︁
𝑘∈[𝐾 ]

r(𝑡)
𝑖

∏
𝑙∈[𝐾+𝑇 ]\{𝑘 }

𝛼 𝑗 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

+
𝐾+𝑇∑︁
𝑘=𝐾+1

v(𝑡)
𝑖𝑘

∏
𝑙∈[𝐾+𝑇 ]\{𝑘 }

𝛼 𝑗 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

(22)

where v(𝑡)
𝑖𝑘
∈ F

𝑑
𝑁−𝑇
𝑞 for 𝑘 ∈ {𝐾 + 1, . . . , 𝐾 + 𝑇} are generated

uniformly at random. By combining {̃r(𝑡)
𝑗𝑖
, [r 𝑗 ] (𝑡)𝑖 } 𝑗∈[𝑁 ] , client

𝑖 then generates a (large-dimensional) encoded vector,

r̃(𝑡)
𝑖
, (M ⊗ I) ×

[
(̃r(𝑡)1𝑖 )

T · · · (̃r(𝑡)
𝑁𝑖
)T

]T
, (23)

and a (large-dimensional) secret share,

[r] (𝑡)
𝑖
, (M ⊗ I) ×

[
[r(𝑡)1 ]

T
𝑖
· · · [r(𝑡)

𝑁
]T
𝑖

]T
, (24)

where r(𝑡) , (M ⊗ I) ×
[
(r(𝑡)1 )

T · · · (r(𝑡)
𝑁
)T

]T
is a random

mask that will later be utilized to hide the true model in the
online phase. In doing so, the key intuition is to generate secret
shares [r(𝑡) ]𝑖 of a random mask r(𝑡) that will later be utilized
to decode a masked model in the online phase (where the
true model will be hidden by the mask r(𝑡) ), after which the
encoded masks r̃(𝑡)

𝑖
will be utilized to encode the model for

training.
Online. In the online phase, client 𝑖 initially broadcasts,

[ŵ(𝑡) ]𝑖 , [w(𝑡) ]𝑖 − [r(𝑡) ]𝑖 = [w(𝑡) − r(𝑡) ]𝑖 (25)

which corresponds to a secret share of the masked model w(𝑡)−
r(𝑡) . After receiving {[ŵ(𝑡) ]𝑖}𝑖∈[𝑁 ] , each client can decode a
masked model,

ŵ(𝑡) = w(𝑡) − r(𝑡) (26)

via polynomial interpolation, where the true value of the model
w(𝑡) is hidden by the random mask r(𝑡) . Using (26), client 𝑖
then constructs an encoded model,

w̃(𝑡)
𝑖
,

∑︁
𝑘∈[𝐾 ]

ŵ(𝑡)
∏

𝑙∈[𝐾+𝑇 ]\{𝑘 }

𝛼𝑖 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

+ r̃(𝑡)
𝑖

(27)

Intuitively, the encoding operation in (27) embeds the model
w(𝑡) in a Lagrange polynomial,

ℎ(𝛼) ,
∑︁
𝑘∈[𝐾 ]

w(𝑡)
∏

𝑙∈[𝐾+𝑇 ]\{𝑘 }

𝛼 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

+
𝐾+𝑇∑︁
𝑘=𝐾+1

v(𝑡)
𝑘

∏
𝑙∈[𝐾+𝑇 ]\{𝑘 }

𝛼 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

(28)

such that v(𝑡)
𝑘
, (M ⊗ I) ×

[
(v(𝑡)1𝑘 )

T · · · (v(𝑡)
𝑁 𝑘
)T

]T
, where

ℎ(𝛽𝑘 ) = w(𝑡) for 𝑘 ∈ [𝐾], and client 𝑖 obtains an encoded
model w̃(𝑡)

𝑖
= ℎ(𝛼𝑖). The random vectors {v(𝑡)

𝑘
}𝑘∈{𝐾+1,...,𝐾+𝑇 }

hide the true value of w(𝑡) against up to 𝑇 adversaries.

E. Gradient Computing and Model Update

The last component of PICO is gradient computation and
model update, using the encoded datasets and model. At the
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end, client 𝑖 learns a secret share [w(𝑡+1) ]𝑖 of the model w(𝑡+1)
for the next training round.

(Gradient computing) Initially, clients compute the gradient
using the encoded dataset and model. The offline and online
phases of this stage proceed as follows.

Offline. Client 𝑖 ∈ [𝑁] generates 𝐶 , (2𝑟 + 1) (𝐾 +𝑇 − 1) + 1
random vectors u𝑖𝑘 of size 𝑑

𝑁−𝑇 , and constructs a Lagrange
polynomial of degree 𝐶 − 1,

𝜙𝑖 (𝛼) ,
∑︁
𝑘∈[𝐶 ]

u(𝑡)
𝑖𝑘

∏
𝑙∈[𝐶 ]\{𝑘 }

𝛼 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

(29)

where {𝛽𝑘 }𝑘∈{𝐾+1,...,𝐶 } are distinct public parameters from
F𝑞 , and 𝜙𝑖 (𝛽𝑘 ) = u(𝑡)

𝑖𝑘
for 𝑘 ∈ [𝐶]. Client 𝑖 then sends an

encoded vector,
ũ(𝑡)
𝑖 𝑗
, 𝜙𝑖 (𝛼 𝑗 ) (30)

to each client 𝑗 ∈ [𝑁]. After receiving {ũ(𝑡)
𝑗𝑖
} 𝑗∈[𝑁 ] , client 𝑖

constructs a new (large-dimensional) encoded vector,

ũ(𝑡)
𝑖
, (M ⊗ I) ×

[
(ũ(𝑡)1𝑖 )

T · · · (ũ(𝑡)
𝑁𝑖
)T

]T
(31)

which can be viewed as an evaluation of a degree 𝐶 − 1
Lagrange polynomial,

𝜙(𝛼) ,
∑︁
𝑘∈[𝐶 ]

u(𝑡)
𝑘

∏
𝑙∈[𝐶 ]\{𝑘 }

𝛼 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

(32)

such that u(𝑡)
𝑘
, (M ⊗ I) ×

[
(u(𝑡)1𝑘 )

T · · · (u(𝑡)
𝑁 𝑘
)T

]T
, where

𝜙(𝛽𝑘 ) = u(𝑡)
𝑘

for all 𝑘 ∈ [𝐶], and client 𝑖 obtains an encoded
vector ũ(𝑡)

𝑖
= 𝜙(𝛼𝑖). Client 𝑖 then secret shares the sum∑

𝑘∈[𝐾 ] u
(𝑡)
𝑖𝑘

, by sending each client 𝑗 ∈ [𝑁] a secret share,[ ∑︁
𝑘∈[𝐾 ]

u(𝑡)
𝑖𝑘

]
𝑗
,

∑︁
𝑘∈[𝐾 ]

u(𝑡)
𝑖𝑘
+

∑︁
𝑙∈[𝑇 ]

𝛾𝑙𝑗z
(𝑡)
𝑖𝑙

(33)

where z(𝑡)
𝑖𝑙

are uniformly random vectors, and {𝛾 𝑗 } 𝑗∈[𝑁 ] are
distinct public parameters. After receiving [∑𝑘∈[𝐾 ] u

(𝑡)
𝑗𝑘
]𝑖 for

𝑗 ∈ [𝑁], client 𝑖 generates a secret share of
∑
𝑘∈[𝐾 ] u

(𝑡)
𝑘

,

[ ∑︁
𝑘∈[𝐾 ]

u(𝑡)
𝑘

]
𝑖
, (M ⊗ I) ×


[∑𝑘∈[𝐾 ] u

(𝑡)
1𝑘 ]𝑖

...

[∑𝑘∈[𝐾 ] u
(𝑡)
𝑁 𝑘
]𝑖

 (34)

Online. PPML frameworks that build on polynomial em-
beddings, as in our framework, are bound to finite field
polynomial operations. The sigmoid function in (1) is not a
polynomial, hence is often approximated with a polynomial
�̂�(𝑥) = ∑𝑟

𝑖=0 \𝑖𝑥
𝑖 [38] where {\𝑖}𝑖∈[𝑟 ] are public coefficients

fitted via least squares (prior to training), and degree 𝑟

quantifies the accuracy of approximation [79]. Then, client
𝑖 computes a local gradient,

𝜑(𝛼𝑖) , X̃T
𝑖 �̂�(X̃𝑖 × w̃(𝑡)

𝑖
) (35)

using the encoded dataset X̃𝑖 and model w̃(𝑡)
𝑖

, where we define
a degree 𝐶−1 polynomial 𝜑(𝛼) = 𝑓 (𝛼)T�̂�( 𝑓 (𝛼)×ℎ(𝛼)) using
(12) and (28), such that client 𝑖 computes the encoded gradient

𝜑(𝛼𝑖), whereas the true gradient is given by,

XT
�̂�(X × w(𝑡) ) =

∑︁
𝑘∈[𝐾 ]

𝜑(𝛽𝑘 ) =
∑︁
𝑘∈[𝐾 ]

(X′𝑘 )T�̂�(X
′
𝑘 × w(𝑡) ),

(36)

where X′𝑘 , 𝑓 (𝛽𝑘 ) =
[
XT

1𝑘 · · · XT
𝑁 𝑘

]T
from (12). Then,

client 𝑖 broadcasts a masked gradient,

û(𝑡)
𝑖
, X̃T

𝑖 �̂�(X̃𝑖 × w̃(𝑡)
𝑖
) − ũ(𝑡)

𝑖
= 𝜑(𝛼𝑖) − 𝜙(𝛼𝑖), (37)

which is an evaluation of the degree 𝐶−1 polynomial 𝜓(𝛼) ,
𝜑(𝛼) − 𝜙(𝛼). Upon receiving û(𝑡)

𝑗
from any set 𝑗 ∈ S of at

least deg(𝜓) + 1 = 𝐶 clients, client 𝑖 can recover 𝜓(𝛼) via
polynomial interpolation, and compute a secret share of the
true gradient XT

�̂�(X × w(𝑡) ) using (34),[
XT
�̂�(X × w(𝑡) )

]
𝑖
,

∑︁
𝑘∈[𝐾 ]

𝜓(𝛽𝑘 ) +
[ ∑︁
𝑘∈[𝐾 ]

u(𝑡)
𝑘

]
𝑖

(38)

= XT
�̂�(X × w(𝑡) ) +

∑︁
𝑙∈[𝑇 ]

𝛾𝑙𝑖z
(𝑡)
𝑙
, (39)

where z(𝑡)
𝑙
, (M ⊗ I) ×

[
(z(𝑡)1𝑙 )

T · · · (z(𝑡)
𝑁𝑙
)T

]T
for 𝑙 ∈ [𝑇]

are random masks that hide the true gradient against up to 𝑇
adversaries. The model update at client 𝑖 can then be written
as,

[w(𝑡+1) ]𝑖 = [w(𝑡) ]𝑖 −
[

𝑚
( [X𝑇 �̂�(X × w(𝑡) )]𝑖 − [X

Ty]𝑖), (40)

where, on the other hand, [

𝑚
� 1 in (40). To handle this

operation in the finite field, one can either convert (40) to a
computation on integers [2] by assuming a sufficiently large
field size, as will be detailed in Appendix D, or can utilize
a secure multi-party truncation (quantization) protocol [80] to
reduce the required field size (albeit with weaker privacy) as
will be detailed in Section VIII. In our theoretical analysis
in Section VII, we assume a sufficiently large field size and
consider the former, whereas we utilize the latter in our
experiments from Section VIII.
Final Model Recovery. After 𝐽 training rounds, clients can
collect the secret shares {[w(𝐽 ) ]𝑖}𝑖∈I from any set I of at
least |I | ≥ 𝑇 + 1 clients, and decode the final model w(𝐽 ) .

Our overall algorithm is given in Appendix A.

VI. MOTIVATING EXAMPLE

We next present a motivating example for 𝑁 = 4 clients,
with 𝑑 = 6 and 𝐾 = 𝑇 = 1 as illustrated in Fig 3. Initially,
clients encode their local datasets. The main intuition is to
generate and encode random masks offline, where each client
𝑖 ∈ [4] generates a random mask R𝑖1, and sends an encoded
mask R̃𝑖 𝑗 to client 𝑗 ∈ [4]. The offline random masks are
later used in the online phase to hide the local datasets X𝑖1
where client 𝑖 broadcasts a masked dataset X̂𝑖1 = X𝑖1 − R𝑖1,
using which, along with the offline encoded masks R̃𝑖 𝑗 , clients
encode the datasets. At the end, each client 𝑖 learns an encoded
dataset X̃𝑖 . In addition to dataset encoding, clients also encode
their labels and initialize the model as described in Sections 2
and 3, respectively.

At each training round 𝑡, clients also encode the model
w(𝑡) . To prevent information leakage from intermediate model
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Client 4Client 3

Client 1

Client 2

random mask

po
int

-to
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t

Offline <latexit sha1_base64="BA5DA9Sbvdg9dE3GjMGFAmAujbw=">AAAB+HicbVDLSsNAFL2pr1ofjbp0EyyCq5IRUZcFNy6r2Ae0IUymk3boZBJmJkIN+RI3LhRx66e482+ctFlo64GBwzn3cs+cIOFMadf9tipr6xubW9Xt2s7u3n7dPjjsqjiVhHZIzGPZD7CinAna0Uxz2k8kxVHAaS+Y3hR+75FKxWLxoGcJ9SI8FixkBGsj+XZ9GGE9CcLsPvczhHLfbrhNdw5nlaCSNKBE27e/hqOYpBEVmnCs1AC5ifYyLDUjnOa1YapogskUj+nAUIEjqrxsHjx3To0ycsJYmie0M1d/b2Q4UmoWBWayiKmWvUL8zxukOrz2MiaSVFNBFofClDs6dooWnBGTlGg+MwQTyUxWh0ywxESbrmqmBLT85VXSPW+iyya6u2i0WmUdVTiGEzgDBFfQgltoQwcIpPAMr/BmPVkv1rv1sRitWOXOEfyB9fkDqgiTFg==</latexit>

R11

<latexit sha1_base64="UqCuq9VJ6HIhn+K9NJiYkO6QGnU=">AAACBHicbVDLSsNAFJ34rPUVddnNYBFclaSIuiy4cVnFPqANYTK5aYdOHsxMlBKycOOvuHGhiFs/wp1/46TNQlsPXDiccy/33uMlnEllWd/Gyura+sZmZau6vbO7t28eHHZlnAoKHRrzWPQ9IoGzCDqKKQ79RAAJPQ49b3JV+L17EJLF0Z2aJuCEZBSxgFGitOSateED80Ex7kM2DIkae0F2m+duZjdz16xbDWsGvEzsktRRibZrfg39mKYhRIpyIuXAthLlZEQoRjnk1WEqISF0QkYw0DQiIUgnmz2R4xOt+DiIha5I4Zn6eyIjoZTT0NOdxZ1y0SvE/7xBqoJLJ2NRkiqI6HxRkHKsYlwkgn0mgCo+1YRQwfStmI6JIFTp3Ko6BHvx5WXSbTbs84Z9c1Zvtco4KqiGjtEpstEFaqFr1EYdRNEjekav6M14Ml6Md+Nj3rpilDNH6A+Mzx97Apie</latexit> eR12
<latexit sha1_base64="u6v8I0qERu3DAjVWukHmGqIW4yc=">AAACBHicbVDLSsNAFJ3UV62vqMtuBovgqiQi6rLgxmUV+4A2hMnkph06eTAzUUrIwo2/4saFIm79CHf+jZM2C209cOFwzr3ce4+XcCaVZX0blZXVtfWN6mZta3tnd8/cP+jKOBUUOjTmseh7RAJnEXQUUxz6iQASehx63uSq8Hv3ICSLozs1TcAJyShiAaNEack168MH5oNi3IdsGBI19oLsNs/dzD7LXbNhNa0Z8DKxS9JAJdqu+TX0Y5qGECnKiZQD20qUkxGhGOWQ14aphITQCRnBQNOIhCCdbPZEjo+14uMgFroihWfq74mMhFJOQ093FnfKRa8Q//MGqQounYxFSaogovNFQcqxinGRCPaZAKr4VBNCBdO3YjomglClc6vpEOzFl5dJ97Rpnzftm7NGq1XGUUV1dIROkI0uUAtdozbqIIoe0TN6RW/Gk/FivBsf89aKUc4coj8wPn8AfgyYoA==</latexit> eR14

<latexit sha1_base64="oTWEd+INpPRp0KsQPYoDdErLhR4=">AAACBHicbVDLSsNAFJ34rPUVddnNYBFclURFXRbcuKxiH9CGMJnctEMnD2YmSglZuPFX3LhQxK0f4c6/cdJmoa0HLhzOuZd77/ESzqSyrG9jaXlldW29slHd3Nre2TX39jsyTgWFNo15LHoekcBZBG3FFIdeIoCEHoeuN74q/O49CMni6E5NEnBCMoxYwChRWnLN2uCB+aAY9yEbhESNvCC7zXM3s09z16xbDWsKvEjsktRRiZZrfg38mKYhRIpyImXfthLlZEQoRjnk1UEqISF0TIbQ1zQiIUgnmz6R4yOt+DiIha5I4an6eyIjoZST0NOdxZ1y3ivE/7x+qoJLJ2NRkiqI6GxRkHKsYlwkgn0mgCo+0YRQwfStmI6IIFTp3Ko6BHv+5UXSOWnY5w375qzebJZxVFANHaJjZKML1ETXqIXaiKJH9Ixe0ZvxZLwY78bHrHXJKGcO0B8Ynz98h5if</latexit> eR13

<latexit sha1_base64="Qjjj9npsgURn4bUORisOgtI1JNM=">AAAB+HicbVDLSsNAFL3xWeujUZduBovgqiQq6rLgxmUV+4A2hMl00g6dTMLMRKghX+LGhSJu/RR3/o2TNgttPTBwOOde7pkTJJwp7Tjf1srq2vrGZmWrur2zu1ez9w86Kk4loW0S81j2AqwoZ4K2NdOc9hJJcRRw2g0mN4XffaRSsVg86GlCvQiPBAsZwdpIvl0bRFiPgzC7z/3s3M19u+40nBnQMnFLUocSLd/+GgxjkkZUaMKxUn3XSbSXYakZ4TSvDlJFE0wmeET7hgocUeVls+A5OjHKEIWxNE9oNFN/b2Q4UmoaBWayiKkWvUL8z+unOrz2MiaSVFNB5ofClCMdo6IFNGSSEs2nhmAimcmKyBhLTLTpqmpKcBe/vEw6Zw33suHeXdSbzbKOChzBMZyCC1fQhFtoQRsIpPAMr/BmPVkv1rv1MR9dscqdQ/gD6/MHrRSTGA==</latexit>

R31

<latexit sha1_base64="lc280vPnkyn6n2e6k40kN6FJzoQ=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyURUZcFNy6r2Ae0IUymk3boZBJmJkIN+RI3LhRx66e482+ctFlo64GBwzn3cs+cIOFMacf5tipr6xubW9Xt2s7u3n7dPjjsqjiVhHZIzGPZD7CinAna0Uxz2k8kxVHAaS+Y3hR+75FKxWLxoGcJ9SI8FixkBGsj+XZ9GGE9CcLsPvezCzf37YbTdOZAq8QtSQNKtH37aziKSRpRoQnHSg1cJ9FehqVmhNO8NkwVTTCZ4jEdGCpwRJWXzYPn6NQoIxTG0jyh0Vz9vZHhSKlZFJjJIqZa9grxP2+Q6vDay5hIUk0FWRwKU450jIoW0IhJSjSfGYKJZCYrIhMsMdGmq5opwV3+8irpnjfdy6Z7d9Fotco6qnAMJ3AGLlxBC26hDR0gkMIzvMKb9WS9WO/Wx2K0YpU7R/AH1ucPrpqTGQ==</latexit>

R41

broadcast

masked 
dataset

local 
dataset

Online <latexit sha1_base64="jgALAjDfOihdH+JckSCkxNivBy4=">AAACBHicbVDLSgMxFM3UV62vUZfdBIvgqkxE1GXBjcsK9gHtMGTSTBuaSYYkI5RhFm78FTcuFHHrR7jzb8y0s9DWA4HDOfeQe0+YcKaN5307lbX1jc2t6nZtZ3dv/8A9POpqmSpCO0Ryqfoh1pQzQTuGGU77iaI4DjnthdObwu89UKWZFPdmllA/xmPBIkawsVLg1ofS2kU6G8bYTMIo6+d5kCGUw8BteE1vDrhKUEkaoEQ7cL+GI0nSmApDONZ6gLzE+BlWhhFO89ow1TTBZIrHdGCpwDHVfjY/IoenVhnBSCr7hIFz9Xciw7HWszi0k8WietkrxP+8QWqiaz9jIkkNFWTxUZRyaCQsGoEjpigxfGYJJorZXSGZYIWJsb3VbAlo+eRV0j1vossmurtotFplHVVQByfgDCBwBVrgFrRBBxDwCJ7BK3hznpwX5935WIxWnDJzDP7A+fwBMLKYbA==</latexit>

X11

<latexit sha1_base64="esM6MU/JZ4bI6g8bZ23KnL0xRyI=">AAACBHicbVDLSsNAFL2pr1pfUZfdDBbBVUlE1GXBjcsK9gFtCJPppB06mYSZiVBCFm78FTcuFHHrR7jzb5y0WWjrgYHDOfcw954g4Uxpx/m2KmvrG5tb1e3azu7e/oF9eNRVcSoJ7ZCYx7IfYEU5E7Sjmea0n0iKo4DTXjC9KfzeA5WKxeJezxLqRXgsWMgI1kby7fowNnaRzoYR1pMgzPp57mcXbo58u+E0nTnQKnFL0oASbd/+Go5ikkZUaMKxUgPXSbSXYakZ4TSvDVNFE0ymeEwHhgocUeVl8yNydGqUEQpjaZ7QaK7+TmQ4UmoWBWayWFQte4X4nzdIdXjtZUwkqaaCLD4KU450jIpG0IhJSjSfGYKJZGZXRCZYYqJNbzVTgrt88irpnjfdy6Z7d9Fotco6qlCHEzgDF66gBbfQhg4QeIRneIU368l6sd6tj8VoxSozx/AH1ucPNUeYbw==</latexit>

X41

<latexit sha1_base64="g9Ppr9K+ZeX9iXoBxpMYXiWDsBs=">AAACBHicbVDLSsNAFL3xWesr6rKbwSK4KkkRdVlw47KCfUAbwmQ6aYdOJmFmIpSQhRt/xY0LRdz6Ee78GydtFtp6YOBwzj3MvSdIOFPacb6ttfWNza3tyk51d2//4NA+Ou6qOJWEdkjMY9kPsKKcCdrRTHPaTyTFUcBpL5jeFH7vgUrFYnGvZwn1IjwWLGQEayP5dm0YG7tIZ8MI60kQZv0897OmmyPfrjsNZw60StyS1KFE27e/hqOYpBEVmnCs1MB1Eu1lWGpGOM2rw1TRBJMpHtOBoQJHVHnZ/IgcnRllhMJYmic0mqu/ExmOlJpFgZksFlXLXiH+5w1SHV57GRNJqqkgi4/ClCMdo6IRNGKSEs1nhmAimdkVkQmWmGjTW9WU4C6fvEq6zYZ72XDvLuqtVllHBWpwCufgwhW04Bba0AECj/AMr/BmPVkv1rv1sRhds8rMCfyB9fkDMjmYbQ==</latexit>

X21

<latexit sha1_base64="+iuu1+k+jzwlRde7UBOX2sFYixE=">AAACL3icbVDLSgMxFM34rPU16tJNsAhuLBMRdSMUBHFZxT6gMwyZTKYNzTxIMkoZ5o/c+CvdiCji1r8w046grRcCJ+fck9x7vIQzqSzr1VhYXFpeWa2sVdc3Nre2zZ3dtoxTQWiLxDwWXQ9LyllEW4opTruJoDj0OO14w6tC7zxQIVkc3atRQp0Q9yMWMIKVplzz2n5kPh1gldkhVgMvyLp57mYI5fAS2rG2Fi/Picc/xN307po1q25NCs4DVIIaKKvpmmPbj0ka0kgRjqXsIStRToaFYoTTvGqnkiaYDHGf9jSMcEilk032zeGhZnwYxEKfSMEJ+9uR4VDKUejpzmJMOasV5H9aL1XBhZOxKEkVjcj0oyDlUMWwCA/6TFCi+EgDTATTs0IywAITpSOu6hDQ7MrzoH1SR2d1dHtaazTKOCpgHxyAI4DAOWiAG9AELUDAExiDN/BuPBsvxofxOW1dMErPHvhTxtc3fcWqhg==</latexit> bX11 = X11 � R11

<latexit sha1_base64="Y+q2kRHzw7Y7UA8RiggwBWxwhHQ=">AAACBHicbVDLSsNAFL3xWesr6rKbwSK4KomKuiy4cVnBPqANYTKdtEMnmTAzEUrIwo2/4saFIm79CHf+jZM2C209MHA45x7m3hMknCntON/Wyura+sZmZau6vbO7t28fHHaUSCWhbSK4kL0AK8pZTNuaaU57iaQ4CjjtBpObwu8+UKmYiO/1NKFehEcxCxnB2ki+XRsIYxfpbBBhPQ7CrJfnfnbu5si3607DmQEtE7ckdSjR8u2vwVCQNKKxJhwr1XedRHsZlpoRTvPqIFU0wWSCR7RvaIwjqrxsdkSOTowyRKGQ5sUazdTfiQxHSk2jwEwWi6pFrxD/8/qpDq+9jMVJqmlM5h+FKUdaoKIRNGSSEs2nhmAimdkVkTGWmGjTW9WU4C6evEw6Zw33suHeXdSbzbKOCtTgGE7BhStowi20oA0EHuEZXuHNerJerHfrYz66YpWZI/gD6/MHM8CYbg==</latexit>

X31

low-dimensional 
random mask

Model encodingDataset encoding

masked gradient

Gradient computing

masked model

<latexit sha1_base64="82mlQiYRMqQwxcOeUX1GGvf1mN8=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBbBVUlU1GXBjcsK9gFtCJPJTTt08mBmopQQcOOvuHGhiFt/wp1/46TNQlsPXDiccy/33uMlnEllWd9GZWl5ZXWtul7b2Nza3jF39zoyTgWFNo15LHoekcBZBG3FFIdeIoCEHoeuN74u/O49CMni6E5NEnBCMoxYwChRWnLNg8ED82FEVDYIiRp5QdbLczc7s3PsmnWrYU2BF4ldkjoq0XLNr4Ef0zSESFFOpOzbVqKcjAjFKIe8NkglJISOyRD6mkYkBOlk0x9yfKwVHwex0BUpPFV/T2QklHISerqzOFTOe4X4n9dPVXDlZCxKUgURnS0KUo5VjItAsM8EUMUnmhAqmL4V0xERhCodW02HYM+/vEg6pw37omHfntebzTKOKjpER+gE2egSNdENaqE2ougRPaNX9GY8GS/Gu/Exa60Y5cw++gPj8wdDAZfm</latexit>bX
31 <latexit sha1_base64="kChTFAK0M8bpteIBMmj/zCdK1IY=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBbBVUmKqMuCG5cV7AOaECbTSTt08mDmRikh4MZfceNCEbf+hDv/xkmbhbYeuHA4517uvcdPBFdgWd9GZWV1bX2julnb2t7Z3TP3D7oqTiVlHRqLWPZ9opjgEesAB8H6iWQk9AXr+ZPrwu/dM6l4HN3BNGFuSEYRDzgloCXPPHIe+JCNCWROSGDsB1k/z72saefYM+tWw5oBLxO7JHVUou2ZX84wpmnIIqCCKDWwrQTcjEjgVLC85qSKJYROyIgNNI1IyJSbzX7I8alWhjiIpa4I8Ez9PZGRUKlp6OvO4lC16BXif94gheDKzXiUpMAiOl8UpAJDjItA8JBLRkFMNSFUcn0rpmMiCQUdW02HYC++vEy6zYZ90bBvz+utVhlHFR2jE3SGbHSJWugGtVEHUfSIntErejOejBfj3fiYt1aMcuYQ/YHx+QNBepfl</latexit> bX21

<latexit sha1_base64="K7fdqK0TlBcHSpJ2zVVOGMDezP4=">AAACAnicbVBNS8NAEN3Ur1q/op7ES7AInkoiRT0WvHisYD+gCWGz3bRLN5uwO1FKCF78K148KOLVX+HNf+OmzUFbHww83pthZl6QcKbAtr+Nysrq2vpGdbO2tb2zu2fuH3RVnEpCOyTmsewHWFHOBO0AA077iaQ4CjjtBZPrwu/dU6lYLO5gmlAvwiPBQkYwaMk3j9wHNqRjDJkbYRgHYdbPcz9rOrlv1u2GPYO1TJyS1FGJtm9+ucOYpBEVQDhWauDYCXgZlsAIp3nNTRVNMJngER1oKnBElZfNXsitU60MrTCWugRYM/X3RIYjpaZRoDuLO9WiV4j/eYMUwisvYyJJgQoyXxSm3ILYKvKwhkxSAnyqCSaS6VstMsYSE9Cp1XQIzuLLy6R73nAuGs5ts95qlXFU0TE6QWfIQZeohW5QG3UQQY/oGb2iN+PJeDHejY95a8UoZw7RHxifP+Syl70=</latexit> bX 4
1

<latexit sha1_base64="iUNLupe+fAZGhW5QU5DPSTB80w8=">AAAB+HicbVDLSsNAFL3xWeujUZduBovgqiRF1GXBjcsq9gFtCJPppB06mYSZiVBDvsSNC0Xc+inu/BsnbRbaemDgcM693DMnSDhT2nG+rbX1jc2t7cpOdXdv/6BmHx51VZxKQjsk5rHsB1hRzgTtaKY57SeS4ijgtBdMbwq/90ilYrF40LOEehEeCxYygrWRfLs2jLCeBGF2n/tZ0819u+40nDnQKnFLUocSbd/+Go5ikkZUaMKxUgPXSbSXYakZ4TSvDlNFE0ymeEwHhgocUeVl8+A5OjPKCIWxNE9oNFd/b2Q4UmoWBWayiKmWvUL8zxukOrz2MiaSVFNBFofClCMdo6IFNGKSEs1nhmAimcmKyARLTLTpqmpKcJe/vEq6zYZ72XDvLuqtVllHBU7gFM7BhStowS20oQMEUniGV3iznqwX6936WIyuWeXOMfyB9fkDq46TFw==</latexit>

R21

po
int

-to
-p

oin
t

po
int

-to
-p
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t

large-dimensional 
coded mask

offline masks

<latexit sha1_base64="v2n8V9/rSsAF4c3zxhdp6K3RzeE=">AAACAXicbVBNS8NAEN34WetX1IvgJViEeimJFPVY0IPHCvYDmlg22027dLMJuxOhhHjxr3jxoIhX/4U3/42bNgdtfTDweG+GmXl+zJkC2/42lpZXVtfWSxvlza3tnV1zb7+tokQS2iIRj2TXx4pyJmgLGHDajSXFoc9pxx9f5X7ngUrFInEHk5h6IR4KFjCCQUt989AdYUjdEMPID9Iky/r1+7QKp1nfrNg1ewprkTgFqaACzb755Q4ikoRUAOFYqZ5jx+ClWAIjnGZlN1E0xmSMh7SnqcAhVV46/SCzTrQysIJI6hJgTdXfEykOlZqEvu7MT1XzXi7+5/USCC69lIk4ASrIbFGQcAsiK4/DGjBJCfCJJphIpm+1yAhLTECHVtYhOPMvL5L2Wc05rzm39UrjuoijhI7QMaoiB12gBrpBTdRCBD2iZ/SK3own48V4Nz5mrUtGMXOA/sD4/AHMxJcd</latexit>

û
(t)
4

<latexit sha1_base64="hKvIh4JCEX2HNO9GPWrvzwZyxqw=">AAACAXicbVBNS8NAEN34WetX1IvgJViEeilJEfVY0IPHCvYDmlg22027dLMJuxOhhHjxr3jxoIhX/4U3/42bNgdtfTDweG+GmXl+zJkC2/42lpZXVtfWSxvlza3tnV1zb7+tokQS2iIRj2TXx4pyJmgLGHDajSXFoc9pxx9f5X7ngUrFInEHk5h6IR4KFjCCQUt989AdYUjdEMPID9Iky/r1+7QKp1nfrNg1ewprkTgFqaACzb755Q4ikoRUAOFYqZ5jx+ClWAIjnGZlN1E0xmSMh7SnqcAhVV46/SCzTrQysIJI6hJgTdXfEykOlZqEvu7MT1XzXi7+5/USCC69lIk4ASrIbFGQcAsiK4/DGjBJCfCJJphIpm+1yAhLTECHVtYhOPMvL5J2veac15zbs0rjuoijhI7QMaoiB12gBrpBTdRCBD2iZ/SK3own48V4Nz5mrUtGMXOA/sD4/AHJsJcb</latexit>

û
(t)
2

<latexit sha1_base64="mrbz/JDDtxGogaRgAJ7Jhj2hYp0=">AAACAXicbVBNS8NAEN34WetX1IvgJViEeimJinos6MFjBfsBTSyb7aZdutmE3YlQQrz4V7x4UMSr/8Kb/8ZNm4O2Phh4vDfDzDw/5kyBbX8bC4tLyyurpbXy+sbm1ra5s9tSUSIJbZKIR7LjY0U5E7QJDDjtxJLi0Oe07Y+ucr/9QKVikbiDcUy9EA8ECxjBoKWeue8OMaRuiGHoB2mSZb3T+7QKx1nPrNg1ewJrnjgFqaACjZ755fYjkoRUAOFYqa5jx+ClWAIjnGZlN1E0xmSEB7SrqcAhVV46+SCzjrTSt4JI6hJgTdTfEykOlRqHvu7MT1WzXi7+53UTCC69lIk4ASrIdFGQcAsiK4/D6jNJCfCxJphIpm+1yBBLTECHVtYhOLMvz5PWSc05rzm3Z5X6dRFHCR2gQ1RFDrpAdXSDGqiJCHpEz+gVvRlPxovxbnxMWxeMYmYP/YHx+QPLOpcc</latexit>

û
(t)
3

<latexit sha1_base64="aiHJgGqM8gycuCgmAt5r3Igz+n8=">AAACDHicbVC7TsMwFHXKq5RXgZHFokIqS5VUCBgrdWEsEn1ISagc12mtOk5kO0iVlQ9g4VdYGECIlQ9g429w2gzQciRLx+fcq3vvCRJGpbLtb6u0tr6xuVXeruzs7u0fVA+PejJOBSZdHLNYDAIkCaOcdBVVjAwSQVAUMNIPpu3c7z8QIWnM79QsIX6ExpyGFCNlpGG15mkvQmoShDrNhro5ze51XZ1nnvlMPcrdtp+ZKrthzwFXiVOQGijQGVa/vFGM04hwhRmS0nXsRPkaCUUxI1nFSyVJEJ6iMXEN5Sgi0tfzYzJ4ZpQRDGNhHldwrv7u0CiSchYFpjJfXC57ufif56YqvPY15UmqCMeLQWHKoIphngwcUUGwYjNDEBbU7ArxBAmElcmvYkJwlk9eJb1mw7lsOLcXtVa7iKMMTsApqAMHXIEWuAEd0AUYPIJn8ArerCfrxXq3PhalJavoOQZ/YH3+AJ98m/o=</latexit>

{u(t)
2k }k2[C]

<latexit sha1_base64="G0a7Z993OZjyVaLaO1Nykc9u0Jo=">AAACHXicbVBNS8MwGE7n15xfU49eikOYl9GOoR4HA/E4wX1A25U0S7ewNK1JKozQP+LFv+LFgyIevIj/xnTbQTcfCHnyvM9L3vcJEkqEtKxvo7C2vrG5Vdwu7ezu7R+UD4+6Ik45wh0U05j3AygwJQx3JJEU9xOOYRRQ3Asmrbzee8BckJjdyWmCvQiOGAkJglJLfrnhKjeCchyEKs18ZU+ygarK88zVj4lLmNPyMn3NPYG6zvz7Qd0vV6yaNYO5SuwFqYAF2n750x3GKI0wk4hCIRzbSqSnIJcEUZyV3FTgBKIJHGFHUwYjLDw12y4zz7QyNMOY68OkOVN/dygYCTGNAu3MpxTLtVz8r+akMrzyFGFJKjFD84/ClJoyNvOozCHhGEk61QQiTvSsJhpDDpHUgZZ0CPbyyqukW6/ZFzX7tlFpthZxFMEJOAVVYINL0AQ3oA06AIFH8AxewZvxZLwY78bH3FowFj3H4A+Mrx8/P6M+</latexit>

{u(t)
1k }k2[C] 2 F2

q

<latexit sha1_base64="MCA+Qvi1+wCOWf9vewl7F+PPIIk=">AAACHXicbVBNS8MwGE7n15xfU49eikOYl9GOoR4HA/E4wX1A25U0S7ewNK1JKozQP+LFv+LFgyIevIj/xnTbQTcfCHnyvM9L3vcJEkqEtKxvo7C2vrG5Vdwu7ezu7R+UD4+6Ik45wh0U05j3AygwJQx3JJEU9xOOYRRQ3Asmrbzee8BckJjdyWmCvQiOGAkJglJLfrnhKjeCchyEKs181ZhkA1WV55mrHxOXMKflZfqaewJ1nfn3g7pfrlg1awZzldgLUgELtP3ypzuMURphJhGFQji2lUhPQS4JojgruanACUQTOMKOpgxGWHhqtl1mnmllaIYx14dJc6b+7lAwEmIaBdqZTymWa7n4X81JZXjlKcKSVGKG5h+FKTVlbOZRmUPCMZJ0qglEnOhZTTSGHCKpAy3pEOzllVdJt16zL2r2baPSbC3iKIITcAqqwAaXoAluQBt0AAKP4Bm8gjfjyXgx3o2PubVgLHqOwR8YXz9EOqNB</latexit>

{u(t)
4k }k2[C] 2 F2

q

<latexit sha1_base64="EPZbflCntFIgXC0bLdvBLSQjmKw=">AAACHXicbVBNS8MwGE79nPNr6tFLcQjzMto51ONgIB4nuA9ou5Jm6RaWpjVJhRH6R7z4V7x4UMSDF/HfmG476OYDIU+e93nJ+z5BQomQlvVtrKyurW9sFraK2zu7e/ulg8OOiFOOcBvFNOa9AApMCcNtSSTFvYRjGAUUd4NxM693HzAXJGZ3cpJgL4JDRkKCoNSSX6q7yo2gHAWhSjNfnY+zvqrIs8zVj7FLmNP0Mn3NPIG6zvz7fs0vla2qNYW5TOw5KYM5Wn7p0x3EKI0wk4hCIRzbSqSnIJcEUZwV3VTgBKIxHGJHUwYjLDw13S4zT7UyMMOY68OkOVV/dygYCTGJAu3MpxSLtVz8r+akMrzyFGFJKjFDs4/ClJoyNvOozAHhGEk60QQiTvSsJhpBDpHUgRZ1CPbiysukU6vaF1X7tl5uNOdxFMAxOAEVYINL0AA3oAXaAIFH8AxewZvxZLwY78bHzLpizHuOwB8YXz9CkaNA</latexit>

{u(t)
3k }k2[C] 2 F2

q

<latexit sha1_base64="64m0v+0VrFxOhbU9ILAKQbrGWl0=">AAACDHicbVDLSsNAFJ34rPVVdekmWIS6KUkRdVkoiMsK9gFtGibTSTt0MokzN0IJ+QA3/oobF4q49QPc+TdO2iy09cDA4ZxzmXuPF3GmwLK+jZXVtfWNzcJWcXtnd2+/dHDYVmEsCW2RkIey62FFORO0BQw47UaS4sDjtONNGpnfeaBSsVDcwTSiToBHgvmMYNCSWyr3Awxjz09k6tqDpAJnaZ+Juegl16l7P6jplFW1ZjCXiZ2TMsrRdEtf/WFI4oAKIBwr1bOtCJwES2CE07TYjxWNMJngEe1pKnBAlZPMjknNU60MTT+U+gkwZ+rviQQHSk0DTyezLdWil4n/eb0Y/CsnYSKKgQoy/8iPuQmhmTVjDpmkBPhUE0wk07uaZIwlJqD7K+oS7MWTl0m7VrUvqvbtebneyOsooGN0girIRpeojm5QE7UQQY/oGb2iN+PJeDHejY95dMXIZ47QHxifP/ROm44=</latexit>

r
(t)
1 2 F2

q

<latexit sha1_base64="P6Pni51MpRVuoG01o1yBHTjosdE=">AAACDnicbVDLSsNAFJ34rPUVdekmWAp1U5JS1GWhIC4r2Ae0aZhMJ+3QySTOTIQy5Avc+CtuXCji1rU7/8ZJm4W2HrhwOOde7r3HjykR0ra/jbX1jc2t7cJOcXdv/+DQPDruiCjhCLdRRCPe86HAlDDclkRS3Is5hqFPcdefNjO/+4C5IBG7k7MYuyEcMxIQBKWWPLM8CKGc+IHiqafq6VBV5Hk6IGwh++o69e6HNc8s2VV7DmuVODkpgRwtz/wajCKUhJhJRKEQfceOpasglwRRnBYHicAxRFM4xn1NGQyxcNX8ndQqa2VkBRHXxaQ1V39PKBgKMQt93ZldKZa9TPzP6ycyuHIVYXEiMUOLRUFCLRlZWTbWiHCMJJ1pAhEn+lYLTSCHSOoEizoEZ/nlVdKpVZ2LqnNbLzWaeRwFcArOQAU44BI0wA1ogTZA4BE8g1fwZjwZL8a78bFoXTPymRPwB8bnD9xNnJ0=</latexit>

r
(t)
4 2 F2

q

<latexit sha1_base64="rBBHlAraAm1uD93vNS/gSpCYegw=">AAACDnicbVDLSsNAFJ34rPUVdekmWAp1U5Iq6rJQEJcV7APaNEymk3boZBJnJkIZ8gVu/BU3LhRx69qdf+OkzUJbD1w4nHMv997jx5QIadvfxsrq2vrGZmGruL2zu7dvHhy2RZRwhFsoohHv+lBgShhuSSIp7sYcw9CnuONPGpnfecBckIjdyWmM3RCOGAkIglJLnlnuh1CO/UDx1FNn6UBV5GnaJ2wu++o69e4HNc8s2VV7BmuZODkpgRxNz/zqDyOUhJhJRKEQPceOpasglwRRnBb7icAxRBM4wj1NGQyxcNXsndQqa2VoBRHXxaQ1U39PKBgKMQ193ZldKRa9TPzP6yUyuHIVYXEiMUPzRUFCLRlZWTbWkHCMJJ1qAhEn+lYLjSGHSOoEizoEZ/HlZdKuVZ2LqnN7Xqo38jgK4BicgApwwCWogxvQBC2AwCN4Bq/gzXgyXox342PeumLkM0fgD4zPH9qxnJw=</latexit>

r
(t)
3 2 F2

q

<latexit sha1_base64="jMCBCiz+Wc3J7sKyg+Ucg72ekj8=">AAAB+3icbVDLSsNAFJ3UV62vWJdugkWom5IUUZeFblxWsA9oY5hMJ+3QySTM3Igl5FfcuFDErT/izr9x0mahrQcGDufcyz1z/JgzBbb9bZQ2Nre2d8q7lb39g8Mj87jaU1EiCe2SiEdy4GNFORO0Cww4HcSS4tDntO/P2rnff6RSsUjcwzymbognggWMYNCSZ1ZHIYapH6Qy85oPaR0uMs+s2Q17AWudOAWpoQIdz/wajSOShFQA4VipoWPH4KZYAiOcZpVRomiMyQxP6FBTgUOq3HSRPbPOtTK2gkjqJ8BaqL83UhwqNQ99PZknVateLv7nDRMIbtyUiTgBKsjyUJBwCyIrL8IaM0kJ8LkmmEims1pkiiUmoOuq6BKc1S+vk16z4Vw1nLvLWqtd1FFGp+gM1ZGDrlEL3aIO6iKCntAzekVvRma8GO/Gx3K0ZBQ7J+gPjM8fzjSUSg==</latexit>

r
(t)
2

<latexit sha1_base64="UNb655cHtyvhs7fCFGR/sbdzB8g="></latexit>er (t)41 , [r (t)4
]1 2

F 2
q

<latexit sha1_base64="Ap3WRPqlNJtop4bM/uTmExWqPhE="></latexit> er(
t)

31
, [
r

(t
)

3
] 1
2 F

2
q

<latexit sha1_base64="Xr3heg/+RondUSwqpCOA/5qe0gE=">AAACJHicbVDJSgNBEO1xjXGLevTSGAQFCTNBVPAS8OJRwaiQjENPT4029ix01yihmY/x4q948eCCBy9+i50FXB8UPN6roqpemEuh0XXfnbHxicmp6cpMdXZufmGxtrR8qrNCcWjzTGbqPGQapEihjQIlnOcKWBJKOAuvD/r+2Q0oLbL0BHs5+Am7TEUsOEMrBbX97q2IAIWMwHQThldhbFRZBqbplRdmAzfLLdr5MoLmUPQD45VBre423AHoX+KNSJ2McBTUXrpRxosEUuSSad3x3Bx9wxQKLqGsdgsNOePX7BI6lqYsAe2bwZMlXbdKRONM2UqRDtTvE4YlWveS0Hb2z9W/vb74n9cpMN7zjUjzAiHlw0VxISlmtJ8YjYQCjrJnCeNK2Fspv2KKcbS5Vm0I3u+X/5LTZsPbaXjH2/VWaxRHhaySNbJBPLJLWuSQHJE24eSOPJAn8uzcO4/Oq/M2bB1zRjMr5Aecj0/mAqWJ</latexit>

e r(t
)

2
1
,[
r(t

)
2

] 1

<latexit sha1_base64="I0GBlZPsvBQObWJzFcE48zFA+nU="></latexit>

[bw(t)]1 = [w(t)]1 � [r(t)]1

<latexit sha1_base64="/lKSXTGZl0SvUC6bldcXpSHg2EI="></latexit>

[r(t)]1,er(t)
1 2 F6

q

<latexit sha1_base64="ZhxmWy+IhkaqK5lG/FaZXabuVoI="></latexit>

er(t)
1 , (M ⌦ I) ⇥

2
664

er(t)
11
...

er(t)
41

3
775

<latexit sha1_base64="n5cAiWjJqXPEXFVZ9Mj+J8HA0Hw="></latexit>

eu(t)
1 , (M ⌦ I) ⇥

2
664

eu(t)
11
...

eu(t)
41

3
775

<latexit sha1_base64="fy4fyK++uuIyLpBCUQf7zdEWHOk="></latexit>eu (t)41 , [u
41 ]1 2

F 2
q

<latexit sha1_base64="cWYD7mNI3zmJTD738NNRTUuFoqY=">AAACOHicbZBNa9tAEIZXTj9S98tJj7ksNYEUipHc0OQYCITemkKdGCxFrFajePFqpeyOEsyin5VLfkZuoZceGkqv+QVZy4a2cQYWXt5nhp15k1IKg75/47VWnjx99nz1Rfvlq9dv3nbW1o9MUWkOA17IQg8TZkAKBQMUKGFYamB5IuE4mezP+PE5aCMK9R2nJUQ5O1UiE5yhs+LO1/BCpIBCpmDDnOE4yWxV17H9FNQndgs/1B/p6C+YWw2N4oDSUKg5TOxBHZ+d9ONO1+/5TdFlESxElyzqMO5ch2nBqxwUcsmMGQV+iZFlGgWXULfDykDJ+ISdwshJxXIwkW0Or+mmc1KaFdo9hbRx/52wLDdmmieuc7alechm5mNsVGG2G1mhygpB8flHWSUpFnSWIk2FBo5y6gTjWrhdKR8zzTi6rNsuhODhycviqN8LPveCb9vdvf1FHKtkg7wnWyQgO2SPfCGHZEA4uSQ/yC9y6115P73f3p95a8tbzLwj/5V3dw+U3a1o</latexit> eu
(t
)

31
, [
u

(t
)

31
] 1
2 F

2
q

<latexit sha1_base64="1oBYIpzcQ0mw41LXe1c8hurXpZI=">AAACH3icbZDJSgNBEIZ74hbjFvXopTEIChJmgkSPES8eIxgVknHo6anRJj0L3TVKGOZNvPgqXjwoIt7yNnYWcP2h4eerKrrq91MpNNr20CrNzM7NL5QXK0vLK6tr1fWNC51kikOHJzJRVz7TIEUMHRQo4SpVwCJfwqXfPxnVL+9AaZHE5zhIwY3YTSxCwRka5FWbvXsRAAoZQN6LGN76YZ4VhZc3nGKfdr/Qdb6LexPueo5Xrdl1eyz61zhTUyNTtb3qRy9IeBZBjFwyrbuOnaKbM4WCSygqvUxDynif3UDX2JhFoN18fF9BdwwJaJgo82KkY/p9ImeR1oPIN52jffXv2gj+V+tmGB65uYjTDCHmk4/CTFJM6CgsGggFHOXAGMaVMLtSfssU42girZgQnN8n/zUXjbrTrDtnB7XW8TSOMtki22SXOOSQtMgpaZMO4eSBPJEX8mo9Ws/Wm/U+aS1Z05lN8kPW8BPleqN0</latexit> e u 2
1
,[
u

(t
)

2
1
] 1

<latexit sha1_base64="jCxQG2MZiZXNkEMTPbxlnFR7CkE="></latexit>

û
(t)
1 = eXT

1 ĝ(eX1 ⇥ ew(t)
1 ) � eu(t)

1

offline masks

<latexit sha1_base64="Qv0mnZu23I3lY+qHR2vRz8afkwE=">AAACB3icbVBNS8NAEN34WetX1aMgwSLUS0mKqMeCHjxWsB/QxLLZbNqlm03YnVhKyM2Lf8WLB0W8+he8+W/ctjlo64OBx3szzMzzYs4UWNa3sbS8srq2Xtgobm5t7+yW9vZbKkokoU0S8Uh2PKwoZ4I2gQGnnVhSHHqctr3h1cRvP1CpWCTuYBxTN8R9wQJGMGipVzrqOiPm0wGG1AkxDLwgHWXZfVqB08zt1XqlslW1pjAXiZ2TMsrR6JW+HD8iSUgFEI6V6tpWDG6KJTDCaVZ0EkVjTIa4T7uaChxS5abTPzLzRCu+GURSlwBzqv6eSHGo1Dj0dOfkVjXvTcT/vG4CwaWbMhEnQAWZLQoSbkJkTkIxfSYpAT7WBBPJ9K0mGWCJCejoijoEe/7lRdKqVe3zqn17Vq5f53EU0CE6RhVkowtURzeogZqIoEf0jF7Rm/FkvBjvxsesdcnIZw7QHxifP4gEmbo=</latexit>

[bw(t)]2

<latexit sha1_base64="u+mud7hXc+Ips4sxGLOVyAbnUec=">AAACB3icbVBNS8NAEN34WetX1aMgwSLUS0mkqMeCHjxWsB/QxLLZbNqlm03YnVhKyM2Lf8WLB0W8+he8+W/ctjlo64OBx3szzMzzYs4UWNa3sbS8srq2Xtgobm5t7+yW9vZbKkokoU0S8Uh2PKwoZ4I2gQGnnVhSHHqctr3h1cRvP1CpWCTuYBxTN8R9wQJGMGipVzrqOiPm0wGG1AkxDLwgHWXZfVqB08zt1XqlslW1pjAXiZ2TMsrR6JW+HD8iSUgFEI6V6tpWDG6KJTDCaVZ0EkVjTIa4T7uaChxS5abTPzLzRCu+GURSlwBzqv6eSHGo1Dj0dOfkVjXvTcT/vG4CwaWbMhEnQAWZLQoSbkJkTkIxfSYpAT7WBBPJ9K0mGWCJCejoijoEe/7lRdI6q9rnVfu2Vq5f53EU0CE6RhVkowtURzeogZqIoEf0jF7Rm/FkvBjvxsesdcnIZw7QHxifP4sMmbw=</latexit>

[bw(t)]4

<latexit sha1_base64="CLCNCEgzdpWJH3y0UhoLyyY6q3o=">AAACCnicbVC7TsNAEDzzDOFloKQ5iJBCE9mAgDISFJRBIg/JMdH5ck5OOT90tyaKLNc0/AoNBQjR8gV0/A2XxAUkjLTSaGZXuzteLLgCy/o2FhaXlldWC2vF9Y3NrW1zZ7ehokRSVqeRiGTLI4oJHrI6cBCsFUtGAk+wpje4GvvNByYVj8I7GMXMDUgv5D6nBLTUMQ+w0x7yLusTSNsBgb7np8Msu0/LcJy5nVOMO2bJqlgT4Hli56SEctQ65le7G9EkYCFQQZRybCsGNyUSOBUsK7YTxWJCB6THHE1DEjDlppNXMnyklS72I6krBDxRf0+kJFBqFHi6c3ytmvXG4n+ek4B/6aY8jBNgIZ0u8hOBIcLjXHCXS0ZBjDQhVHJ9K6Z9IgkFnV5Rh2DPvjxPGicV+7xi356Vqtd5HAW0jw5RGdnoAlXRDaqhOqLoET2jV/RmPBkvxrvxMW1dMPKZPfQHxucPpqyaOQ==</latexit>

[bw(t)]3

<latexit sha1_base64="/6hyDGq/Zj51iE+wMm1WOHMMno8="></latexit>

[u(t)]1, eu(t)
1 2 F6

q

Fig. 3: Motivating example. (Offline) Locally generated lower dimensional random vectors are combined to construct large dimensional shared randomness.
(Online) The randomness generated offline is utilized to encode the datasets and model.

parameters, no client can learn the true model during encoding.
The key intuition is to use locally generated lower-dimensional
coded masks to generate high dimensional shared coded
randomness. To do so, client 𝑖 locally generates a random
mask r(𝑡)

𝑖
of size 𝑑

𝑁−𝑇 = 2 offline, and then sends to each
client 𝑗 ∈ [4]: 1) an encoded mask r̃(𝑡)

𝑖 𝑗
∈ F2

𝑞 , 2) a secret
share [r(𝑡)

𝑖
] 𝑗 ∈ F2

𝑞 . After receiving {̃r(𝑡)
𝑗𝑖
, [r(𝑡)

𝑗
]𝑖} 𝑗∈[4] , client 𝑖

generates two large-dimensional random vectors (each of size
𝑑 = 6): 1) encoded mask r̃(𝑡)

𝑖
∈ F6

𝑞 , and 2) secret shared mask
[r(𝑡) ]𝑖 ∈ F6

𝑞 . The offline random masks are then used to mask
and encode the true model in the online phase, where each
client decodes the masked model ŵ(𝑡) = w(𝑡) − r(𝑡) ∈ F6

𝑞 , and
obtains an encoded model w̃𝑖 ∈ F6

𝑞 , but without learning the
true model w(𝑡) ∈ F6

𝑞 , which is hidden by the random mask
r(𝑡) ∈ F6

𝑞 throughout the encoding.

Using the encoded dataset X̃𝑖 and encoded model w̃(𝑡)
𝑖

,
clients then compute the gradient and update the model. In
doing so, no client should learn the true gradient X𝑇 �̂�(X×w(𝑡) )
or the updated model w(𝑡+1) , as gradients may carry sen-
sitive information about the true datasets. The intuition is
again to use lower-dimensional local randomness to gener-
ate large-dimensional encoded shared randomness. To do so,
offline, client 𝑖 generates 𝐶 random masks {u(𝑡)

𝑖𝑘
}𝑘∈[𝐶 ] of

size 𝑑
𝑁−𝑇 = 2, and sends to every other client 𝑗 ∈ [4] an

encoded mask ũ(𝑡)
𝑖 𝑗
∈ F2

𝑞 , and a secret share [u(𝑡)
𝑖1 ] 𝑗 ∈ F

2
𝑞 .

After receiving {ũ(𝑡)
𝑗𝑖
, [u(𝑡)

𝑗1 ]𝑖} 𝑗∈[4] , each client 𝑖 generates a

large-dimensional encoded mask ũ(𝑡)
𝑖
∈ F6

𝑞 and secret share
[u(𝑡) ]𝑖 ∈ F6

𝑞 , each of size 𝑑 = 6. Online, each client 𝑖
computes a local gradient X̃𝑇

𝑖
�̂�(X̃𝑖×w̃(𝑡)

𝑖
) ∈ F6

𝑞 and broadcasts
û(𝑡)
𝑖

= X̃𝑇
𝑖
�̂�(X̃𝑖×w̃(𝑡)

𝑖
)− ũ(𝑡)

𝑖
∈ F6

𝑞 , using which each client can

decode a masked gradient X𝑇 �̂�(X×w(𝑡) )−u(𝑡) ∈ F6
𝑞 where the

true gradient X𝑇 �̂�(X×w(𝑡) ) ∈ F6
𝑞 is hidden by the offline mask

u(𝑡) ∈ F6
𝑞 , to generate a secret share [X𝑇 �̂�(X × w(𝑡) )]𝑖 ∈ F6

𝑞

and update the model [w(𝑡+1) ]𝑖 ∈ F6
𝑞 for the next training

round.

VII. THEORETICAL ANALYSIS

In this section, we provide the theoretical performance
guarantees of PICO. We first present the total communication
complexity (across all clients). To explicitly demonstrate the
complexity with respect to the number of clients, in the
following we let 𝑚𝑖 = 𝑚 for 𝑖 ∈ [𝑁].

Theorem 1. (Communication complexity) For training a logis-
tic regression model of size 𝑑 in a network of 𝑁 clients, where
up to 𝑇 clients are adversarial, and each client has 𝑚 data
samples partitioned into 𝐾 shards, the total communication
complexity of PICO after 𝐽 training rounds is given by
𝑂 (𝑁𝑑𝑚 + 𝑁 2

𝐾
𝑑 + 𝑁𝑑𝐽) in the online phase, and 𝑂 ( 𝑁 2

𝐾
𝑑𝑚 +

𝑁 2

𝑁−𝑇 𝑑𝐽) in the offline phase. With 𝐾 = Θ(𝑁) and 𝑇 = 𝑂 (𝑁),
the total communication complexity (offline+online) is linear
in the number of clients, which is 𝑂 (𝑁𝑑𝑚 + 𝑁𝑑𝐽).

Proof. The proof is provided in Appendix B. �

As can be observed from Theorem 1, PICO achieves a linear
communication complexity both offline and online, signifi-
cantly improving over the quadratic (online) communication
complexity of the state-of-the-art. We next demonstrate the
per-client computation complexity for PICO.

Theorem 2. (Computation complexity) For training a logis-
tic regression model of size 𝑑 in a network of 𝑁 clients,
where up to 𝑇 clients are adversarial, and each client has
𝑚 data samples partitioned into 𝐾 shards, after 𝐽 train-
ing rounds, PICO incurs a per-client computation overhead
𝑂 (𝑁𝑚𝑑 + 𝑁 𝑑

𝐾
log2 (𝐾 + 𝑇) log log(𝐾 + 𝑇) + 𝐽 𝑁𝑚

𝐾
(𝑑 + 𝑟) +

𝐽𝑑𝑟 (𝐾 +𝑇) log2 𝑟 (𝐾 +𝑇) log log 𝑟 (𝐾 +𝑇)) in the online phase,
and 𝑂 (𝑁𝑑 𝑚

𝐾
log2 (𝐾 + 𝑇) log log(𝐾 + 𝑇) + 𝐽𝑁 𝑑

𝑁−𝑇 log2 𝑟 (𝐾 +
𝑇) log log 𝑟 (𝐾 + 𝑇) + 𝐽𝑁𝑑) in the offline phase.

Proof. The proof is provided in Appendix C. �

In Appendix C, we also compare the computational com-
plexity of PICO with COPML, and show that PICO reduces
the communication complexity without any additional over-
head on the computation complexity.
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The recovery threshold is defined as the minimum number
of clients needed for correct recovery of the final model. We
next present the recovery threshold of PICO.

Theorem 3. (Recovery threshold) In a network of 𝑁 clients,
where up to 𝑇 clients are adversarial, and up to 𝐷 clients
may drop out (or are unavailable) in each training round, the
recovery threshold of PICO is 𝑁 ≥ 𝐷 + (2𝑟 + 1) (𝐾 + 𝑇 − 1) +
1, where 𝑟 is the degree of polynomial approximation of the
sigmoid function.

Proof. The minimum number of clients is determined by
the number of local computations required for polynomial
interpolation, which, from Section V is given by 𝑁 − 𝐷 ≥
(2𝑟 + 1) (𝐾 + 𝑇 − 1) + 1. �

From [7], the recovery threshold of COPML is given by
𝑁 ≥ 𝐷 + (2𝑟 + 1) (𝐾 + 𝑇 − 1) + 1, where 𝑟 ≥ 1. Hence, PICO
achieves equal adversary-robustness (𝑇), dropout-resilience
(𝐷), and parallelization (𝐾) guarantees, while also slashing
the communication overhead.

Remark 3. PICO can also be applied to the simpler linear
regression problem, with the same algorithm steps.

We next present the formal information-theoretic privacy
guarantees from (3).

Theorem 4. (Information-theoretic privacy) In a network of 𝑁
clients, where T andH = [𝑁]\T denote the set of adversarial
and honest clients, respectively, PICO guarantees information
theoretic-privacy for training a logistic regression model w(𝐽 )
after 𝐽 training rounds,

𝐼 ({X𝑖 , y𝑖}𝑖∈H ;MT |{X𝑖 , y𝑖}𝑖∈T ,w
(𝐽 ) ) = 0 (41)

where MT denotes the collection of all messages received or
generated by the adversaries throughout the training.
Proof. The proof is provided in Appendix D. �

Finally, we show that the training operations correctly
recover the target model given in (40).

Theorem 5. (Correctness) PICO correctly recovers the target
model from (40), given a sufficiently large field F𝑞 .
Proof. The proof is given in Appendix E. �

VIII. EXPERIMENTS

To evaluate the performance of PICO, we implement a
distributed logistic regression task for binary classification
on the CIFAR-10 (on classes plane and car) [81], and
MNIST (on digits 0 and 1) [82] datasets, with dataset sizes
(𝑚, 𝑑) = (9019, 3073) and (11432, 785), respectively. The
datasets are distributed evenly across the clients. In all exper-
iments, the inter-client communication is implemented using
the MPI4Py Message Passing Interface (MPI) for Python [83].
The broadcast functionality of the MPI protocol communicates
messages through a tree topology, as opposed to an ideal
broadcast. As such, the communication overhead of PICO
scales with respect to 𝑂 (𝑁 log 𝑁) in the experiments, slightly
higher than 𝑂 (𝑁). This suggests PICO could in principle
achieve even higher gains in an ideal broadcasting setting,
such as a cellular network among devices within the same

coverage area. The other hyperparameters are 𝐽 = 50 and
[ = 1.4 × 10−7, respectively. For CIFAR-10, 9019 samples
are used in the training set, and 1000 samples in the test set.
Then, each local training set is complemented with simple
random crop augmentation (to avoid having too few samples
per client as the number of clients increase), leading to a
total number of 18038 training samples. Similarly, for MNIST,
11432 samples are used for training, and 2115 samples for
testing. Then, each local training set is complemented with
random crop augmentation, leading to 22864 training samples.
Model accuracy is evaluated on the test set, using the model
trained jointly across the 𝑁 clients.

We evaluate the performance with respect to both COPML
[7] and conventional logistic regression. For PICO and
COPML, we leverage the secure truncation protocol from
[80] to carry out the multiplication with [

𝑚
during the model

update in (40), to ensure that the range of the updated model
stays within the range of the finite field as suggested by [7].
This protocol takes as input the secret shares {[𝑥]𝑖}𝑖∈[𝑁 ] of a
variable 𝑥 (where client 𝑖 holds a share [𝑥]𝑖), along with two
public integer parameters ^1 and ^2 such that 0 < ^1 < ^2,
and 𝑥 ∈ F2^2 . Then, the protocol returns the secret shares
{[𝑧]𝑖}𝑖∈[𝑁 ] of a variable 𝑧 such that 𝑧 = b 𝑥2^1 c + 𝑏 where 𝑏
is a Bernoulli random variable (random bit) with probability
𝑃[𝑏 = 1] = (𝑥 mod 2^1 )/2^1 . As such, the secret 𝑥 is
quantized by rounding 𝑥/(2^1 ) to the nearest integer with
probability 1 − 𝜌, where 𝜌 is the distance between the two.
The quantization is unbiased, ensuring the convergence of the
trained model. In the experiments, (^1, ^2) = (22, 24) is used
for both datasets and benchmarks. We further optimize (speed
up) COPML by leveraging the grouping strategy suggested
in [7], which partitions clients into groups of size 𝑇 + 1, and
communicates the secret shares only between clients within the
same group. To ensure correct recovery of the final model, the
number of clients (for both PICO and COPML) must satisfy
the recovery threshold from Thm. 3. We then compare the
performance under the same system configurations from [7]
to ensure a fair comparison, by letting 𝑟 = 1, and considering
the scenario where the degree of privacy (𝑇) and parallelization
(𝐾) are (almost) equal, such that 𝑁 = 3(𝐾 + 𝑇 − 1) + 1 with
𝑇 = b 𝑁−3

6 c and 𝐾 = b 𝑁+23 c −𝑇 . The bandwidth and finite field
size are set as 40Mbps and 𝑞 = 226 − 5, respectively.

We first compare the online communication overhead (in
Mbits) in Fig. 4 (a)-(b), including all communication during
the online phases throughout training. We observe that PICO
significantly decreases the communication overhead, by up to
88.3× and 91.5× on CIFAR-10 and MNIST, respectively. Note
that some one-time communications (i.e., secret sharing the
dataset/labels) were omitted in [7], which we also include as
they are data-dependent. In Fig. 4 (c)-(d), we compare the
overall (online+offline) communication overhead, and observe
a reduction by up to 15.8× on CIFAR-10 and 15.9× on
MNIST. In Table II we provide the details of the online and
overall (online+offline) communication overhead from Fig. 4
for 𝑁 = 60 clients, where we illustrate the cost breakdown
for each protocol component. Fig. 5 (a)-(b) compares the
wall-clock training time of PICO and COPML, including all
(online) communication and computations. We observe that
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(a) Online (CIFAR-10). (b) Online (MNIST). (c) Online+offline (CIFAR-10). (d) Online+offline (MNIST).

Fig. 4: Online (a)-(b) and online+offline (c)-(d) communication overhead.

TABLE II: Communication overhead (in Mbits) across all clients for 𝑁 = 60.

Stage
CIFAR-10 MNIST

Online Online + Offline Online Online + Offline
COPML PICO COPML PICO COPML PICO COPML PICO

1. Dataset enc. 4.1 × 105 3.8 × 103 4.1 × 105 2.4 × 104 2.6 × 105 2.4 × 103 2.6 × 105 1.5 × 104

2. Label enc. 8.3 × 102 0.7 × 102 8.3 × 102 8.6 × 101 4.7 × 102 3.52 × 101 4.7 × 102 4.34 × 101

3. Model init. - - 7.6 × 102 1.4 × 101 - - 3.8 × 102 0.74 × 101

4. Model enc. 2.9 × 103 3.2 × 102 2.9 × 103 1.1 × 103 5.8 × 103 6.5 × 102 5.8 × 103 2.1 × 103

5. Gradient 3.6 × 104 6.5 × 102 3.6 × 104 2.1 × 103 1.8 × 104 3.2 × 102 1.8 × 104 1.1 × 103

Total 4.6 × 105 5.2 × 103 4.6 × 105 2.9 × 104 2.8 × 105 3.1 × 103 2.8 × 105 1.7 × 104

(a) CIFAR-10. (b) MNIST. (c) CIFAR-10. (d) MNIST.

Fig. 5: Online (a)-(b) and online+offline (c)-(d) wall-clock training time.

(a) Model test accuracy. (b) Varying finite field size (𝑞). (c) Varying truncation level (^1).

Fig. 6: Model convergence (a), impact of finite field size (b), and secure truncation (quantization) level (c) on CIFAR-10.

(a) CIFAR-10. (b) MNIST.

Fig. 7: Online+offline wall-clock training time.

PICO speeds-up the training time by up to 6.8× and 7× on

CIFAR-10 and MNIST, respectively. In Fig. 5 (c)-(d), we
present the overall wall-clock time by including both online
and offline operations, and observe a reduction by up to 4.2×
on CIFAR-10 and 4.1× on MNIST.

In Fig. 6(a), we compare the test accuracy of PICO for
𝑁 = 60 and CIFAR-10 with respect to both COPML and
conventional logistic regression (representing our target ac-
curacy), where for the latter training is done in the domain of
real numbers, without any privacy constraints, in a centralized
setting with all data located at a single party. We observe
that PICO achieves comparable accuracy to both COPML
and conventional logistic regression. In Fig. 6(b), we further
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(a) Online (CIFAR-10). (b) Online (MNIST). (c)Online+offline (CIFAR-10). (d) Online+offline (MNIST).
Fig. 8: Online (a)-(b) and online+offline (c)-(d) wall-clock training time (maximum parallelization gain).

evaluate the impact of the finite field size 𝑞, and in Fig. 6(c) we
demonstrate the impact of the secure truncation parameter ^1
on accuracy. We observe that accuracy degrades for very small
^1, which increases the accuracy of quantization but also the
overflow errors, hence there exists a trade-off between quanti-
zation and overflow errors. In practice, these hyperparameters
can be tuned through a local validation set, where each client
can locally identify a feasible range prior to training, after
which clients can agree on the final parameters.

In Fig. 7, we demonstrate the role of parameter 𝐾 on
the overall (offline+online) wall-clock training time of PICO
(including all communication and computations), by letting
𝑁 = 60 and varying 𝐾 . As 𝐾 increases, training time
decreases, as the size of the encoded dataset processed by each
client is proportional to 1/𝐾 (reducing the training load per
client). Fig. 7 also illustrates a trade-off between paralleliza-
tion (accordingly, training time) and adversary resilience, as
increasing 𝐾 decreases the maximum number of adversaries
𝑇 that can be tolerated, as shown in Thm. 3. Finally, we
consider the scenario with the maximum parallelization gain
(i.e., highest 𝐾), by setting 𝑇 = 1 and selecting 𝐾 to be the
highest value that is allowed by the recovery threshold from
Thm. 3. We then present the online and overall (offline+online)
wall-clock training time in Fig. 8 for the two datasets. We
observe that PICO significantly speeds up training by cutting
the online wall-clock training time by up to 8.8× and the
overall (offline+online) wall-clock training time by up to 5.5×,
respectively.

IX. CONCLUSIONS AND FUTURE DIRECTIONS

This work presents PICO, the first collaborative learn-
ing framework with linear communication complexity, under
strong information-theoretic privacy guarantees. PICO builds
on an online-offline trade-off where the communication inten-
sive operations are offloaded to a data-agnostic offline phase.
Then, the amortized communication complexity for the latter
is further reduced to linear via an efficient shared randomness
generation mechanism. In doing so, PICO achieves an order
of magnitude reduction in the communication overhead, while
providing the same accuracy, dropout-resilience and privacy
guarantees as the state-of-the-art. Future directions include
expanding our mechanisms to different machine learning tasks
and loss functions. Extending our work to more complex
machine learning tasks, such as neural networks, necessitates
addressing several key challenges, including the increase in the
polynomial degree of coded computations as the number of
layers increases, due to consecutive multiplication operations

during forward and backpropagation, as well as handling
the impact of consecutive polynomial approximations for
the activation functions (e.g., ReLu activations), which can
accumulate error as the number of layers increases. Addressing
these challenges with efficient neural network architectures
and training mechanisms is an interesting future direction.
Another future direction is developing novel secure quantiza-
tion mechanisms for multi-party machine learning, to enhance
model accuracy under resource limitations.

APPENDIX A
ALGORITHM

The offline and online steps of PICO are presented in
Algorithms 1 and 2, respectively. The offline phase consists of
randomness generation across the 𝑁 clients, which will later
be used for masking the datasets, models, and computations
in the online phase.

APPENDIX B
COMMUNICATION COMPLEXITY

In the following, we analyze the per-client communication
complexity of PICO.
Online. The online communication per-client consists of the
following components: 1) 𝑂 (𝑑𝑚) for dataset encoding (Stage
1), 2) 𝑂 ( 𝑁𝑑

𝐾
) for label encoding (Stage 2), 3) 𝑂 (𝑑) for model

encoding (Stage 4) per training round, 4) 𝑂 (𝑑) for gradient
computing and model update (Stage 5) per training round.
Offline. The offline communication per-client consists of
the following components: 1) 𝑂 (𝑁𝑑 𝑚

𝐾
) for dataset encoding

(Stage 1), 2) 𝑂 ( 𝑁𝑑
(𝑁−𝑇 ) ) for label encoding (Stage 2), 3)

𝑂 ( 𝑁𝑑
𝑁−𝑇 ) for model initialization (Stage 3), 4) 𝑂 ( 𝑁𝑑

𝑁−𝑇 ) for
model encoding (Stage 4) per training round, 5) 𝑂 ( 𝑁𝑑

𝑁−𝑇 ) for
gradient computing and model update (Stage 5) per training
round.

Hence, the communication overhead per-client is 𝑂 (𝑑𝑚 +
𝑁
𝐾
𝑑 + 𝑑𝐽) in the online phase, and 𝑂 ( 𝑁

𝐾
𝑑𝑚 + 𝑁

𝑁−𝑇 𝑑𝐽) in the
offline phase. The total communication complexity across all
𝑁 clients is 𝑂 (𝑁𝑑𝑚 + 𝑁 2

𝐾
𝑑 + 𝑁𝑑𝐽) in the online phase, and

𝑂 ( 𝑁 2

𝐾
𝑑𝑚 + 𝑁 2

𝑁−𝑇 𝑑𝐽) in the offline phase.
Communication complexity of PICO vs COPML. In
Table III, we present the total communication complexity
(across all 𝑁 clients) of PICO versus COPML [7] for each
stage. We observe that PICO incurs a linear communication
overhead both in the online and offline phases. As such, PICO
not only reduces the online communication overhead from
quadratic point-to-point to linear broadcast (by offloading the
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Algorithm 1: PICO - Offline Phase
Input: Number of clients 𝑁 , polynomial coefficients (𝛼1, . . . , 𝛼𝑁 ) , (𝛽1, . . . , 𝛽𝐾 ) .
Output: Random masks {R̃𝑖 𝑗 }𝑖, 𝑗∈[𝑁 ] , { [a𝑖 ] 𝑗 }𝑖, 𝑗∈[𝑁 ] , {̃r(𝑡 )𝑖 , [r(𝑡 ) ]𝑖 , [u(𝑡 )𝑖 ] 𝑗 }𝑖∈[𝑁 ],𝑡∈{0,...,𝐽−1} , random initial model { [w(0) ]𝑖 }𝑖∈[𝑁 ] .
// 1. Dataset Encoding

1 for client 𝑖 = 1, . . . , 𝑁 do
2 Encode the random matrices {R𝑖𝑘 }𝑘∈[𝐾 ] , {V𝑖𝑘 }𝑘∈{𝐾+1,...,𝐾+𝑇 } from (9).
3 for 𝑗 = 1, . . . , 𝑁 do
4 Send the encoded matrix R̃𝑖 𝑗 to client 𝑗.

// 2. Label Encoding
5 for client 𝑖 = 1, . . . , 𝑁 do
6 Encode the random vectors {a𝑖𝑘 }𝑘∈[𝐾 ] , {b𝑖𝑘 }𝑘∈{𝐾+1,...,𝐾+𝑇 } from (13).
7 for 𝑗 = 1, . . . , 𝑁 do
8 Send the encoded vector ã𝑖 𝑗 and secret share [a𝑖 ] 𝑗 to client 𝑗 to client 𝑗.

9 for 𝑖 = 1, . . . , 𝑁 do
10 Construct the encoded vector ã𝑖 , (M ⊗ I) × (ã𝑇1𝑖 , . . . , ã

𝑇
𝑁𝑖
)𝑇 from (14).

11 Construct the secret share [a𝑘 ]𝑖 , M × ( [a1𝑘 ]𝑇𝑖 , . . . , [a𝑁𝑘 ]
𝑇
𝑖
)𝑇 for all 𝑘 ∈ [𝐾 ].

// 3. Model Initialization
12 for client 𝑖 = 1, . . . , 𝑁 do
13 Generate a random vector w(0)

𝑖
from F𝑞 .

14 for 𝑗 = 1, . . . , 𝑁 do
15 Send a secret share [w(0)

𝑖
] 𝑗 to client 𝑗 using Shamir’s secret sharing.

16 for client 𝑖 = 1, . . . , 𝑁 do
17 Initialize the model [w(0) ]𝑖 using { [w(0)

𝑗
]𝑖 } 𝑗∈[𝑁 ] as given in (20).

18 for iteration 𝑡 = 0, . . . , 𝐽 − 1 do
// 4. Model Encoding

19 for client 𝑖 = 1, . . . , 𝑁 do
20 Encode the random vectors r(𝑡 )

𝑖
, {v(𝑡 )

𝑖𝑘
}𝑘∈{𝐾+1,...,𝐾+𝑇 } as in (22).

21 for 𝑗 = 1, . . . , 𝑁 do
22 Send the encoded vector r̃(𝑡 )

𝑖 𝑗
and secret share [r(𝑡 )

𝑖
] 𝑗 to client 𝑗.

23 for client 𝑖 = 1, . . . , 𝑁 do
24 Compute the coded vector, r̃(𝑡 )

𝑖
as given in (23).

25 Compute the secret share [r(𝑡 ) ]𝑖 after receiving { [r(𝑡 )
𝑗
]𝑖 } 𝑗∈[𝑁 ] as given in (24).

// 5. Gradient Computing and Model Update
26 for client 𝑖 = 1, . . . , 𝑁 do
27 Encode {u(𝑡 )

𝑖𝑘
}𝑘∈(2𝑟+1) (𝐾+𝑇−1)+1 as given in (29).

28 for 𝑗 = 1, . . . , 𝑁 do
29 Send the encoded vector ũ(𝑡 )

𝑖 𝑗
to client 𝑗.

30 Send a secret share [∑𝑘∈[𝐾 ] u(𝑡 )𝑖𝑘 ] 𝑗 to client 𝑗 using Shamir’s secret sharing.

31 for client 𝑖 = 1, . . . , 𝑁 do
32 Compute the coded vector, ũ(𝑡 )

𝑖
after receiving {ũ(𝑡 )

𝑗𝑖
} 𝑗∈[𝑁 ] as given in (31).

33 Compute the secret share, [∑𝑘∈[𝐾 ] u(𝑡 )𝑘 ]𝑖 after receiving { [∑𝑘∈[𝐾 ] u(𝑡 )𝑗𝑘 ]𝑖 } 𝑗∈[𝑁 ] from (33).

communication-intensive operations to the offline phase), but
also reduces the offline amortized communication overhead to
linear, as opposed to the naive offloading strategy discussed
in Section IV, where the quadratic communication overhead is
offloaded to the offline phase, but the resulting offline overhead
is still quadratic.

APPENDIX C
COMPUTATION COMPLEXITY

In the following we analyze the per-client computational
overhead of each stage of PICO, for both the offline and online
phases, respectively.
Offline Phase. The offline phase consists of encoding the local
randomness generated by the clients, and random initialization
of the model as follows.

Stage 1: Generation of {R̃𝑖 𝑗 } 𝑗∈[𝑁 ] requires evaluating a La-
grange polynomial of degree 𝐾 +𝑇−1 at 𝑁 points. It is known
that by leveraging efficient algebraic structures, interpolating
a polynomial of degree ^ (and evaluating it at ^ points) has
a computational complexity of 𝑂 (^ log2 ^ log log ^) [6], [84].
As such, this stage has a complexity of 𝑂 (𝑁𝑑 𝑚

𝐾
log2 (𝐾 +

𝑇) log log(𝐾 + 𝑇)) per client.

Stage 2: Computing {ã𝑖 𝑗 } 𝑗∈[𝑁 ] requires evaluating a polyno-
mial of degree 𝐾+𝑇−1 at 𝑁 points, which has a computational
complexity of 𝑂 (𝑁 𝑑

(𝑁−𝑇 )𝐾 log2 (𝐾 + 𝑇) log log(𝐾 + 𝑇)) per
client. Computing ã𝑖 in (14) has a complexity of 𝑂 ( 𝑁𝑑

𝐾
) per

client (since only the non-zero terms should be multiplied
due to the identity matrix). Computing the secret shares
{[a𝑖𝑘 ] 𝑗 } 𝑗∈[𝑁 ] for all 𝑘 ∈ [𝐾] requires evaluating each of
the 𝐾 polynomials of degree 𝑇 at 𝑁 points, which has com-
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Algorithm 2: PICO - Online Phase

Input: Dataset (X, y) = ( (X1, y1) , . . . , (X𝑁 , y𝑁 )) distributed over 𝑁 clients.

Output: Model parameters w(𝐽 ) after 𝐽 training rounds.
// 1. Dataset Encoding

1 for client 𝑖 = 1, . . . , 𝑁 do
2 Partition the dataset X𝑖 into 𝐾 equal-sized shards (X𝑖1, . . . ,X𝑖𝐾 ) .
3 Broadcast the masked dataset X̂𝑖𝑘 = X𝑖𝑘 − R𝑖𝑘 for 𝑘 ∈ [𝐾 ].
4 for client 𝑖 = 1, . . . , 𝑁 do
5 Generate the coded dataset X̃𝑖 from (11).

// 2. Label Encoding
6 for client 𝑖 = 1, . . . , 𝑁 do
7 Partition XT

𝑖 y𝑖 into K equal-sized shards (y𝑖1, . . . , y𝑖𝐾 ) .
8 for client 𝑗 = 1, . . . , 𝑁 do
9 Encode {y𝑖𝑘 }𝑘∈[𝐾 ] as described in (17), and send the encoded vector ỹ𝑖 𝑗 to client 𝑗.

10 for client 𝑖 = 1, . . . , 𝑁 do
11 Broadcast â𝑖 =

∑
𝑗∈[𝑁 ] ỹ 𝑗𝑖 − ã𝑖 from (18).

12 for client 𝑖 = 1, . . . , 𝑁 do
13 Reconstruct

∑
𝑗∈[𝑁 ] y 𝑗𝑘 − a𝑘 for all 𝑘 ∈ [𝐾 ] using polynomial interpolation.

14 Compute a secret share [X𝑇 y]𝑖 of X𝑇 y as given in (19).

15 for iteration 𝑡 = 0, . . . , 𝐽 − 1 do
// 4. Model Encoding

16 for 𝑖 = 1, . . . , 𝑁 do
17 Broadcast [ŵ(𝑡 ) ]𝑖 from (25).

18 for 𝑖 = 1, . . . , 𝑁 do
19 Decode ŵ(𝑡 ) , w(𝑡 ) − r(𝑡 ) using polynomial interpolation.
20 Compute the coded model w̃(𝑡 )

𝑖
in (27).

// 5. Gradient Computing and Model Update
21 for client 𝑖 = 1, . . . , 𝑁 do
22 Compute the gradient X̃𝑇

𝑖
�̂� (X̃𝑖 × w̃(𝑡 )

𝑖
) .

23 Broadcast û(𝑡 )
𝑖

= X̃𝑇
𝑖
�̂� (X̃𝑖×w̃(𝑡 )

𝑖
) − ũ(𝑡 )

𝑖
.

24 for client 𝑖 = 1, . . . , 𝑁 do
25 Decode 𝜓 (𝛽𝑘 ) = 𝜑 (𝛽𝑘 ) − 𝜙 (𝛽𝑘 ) = X𝑇𝑘 �̂� (X𝑘 × w(𝑡 ) ) − u(𝑡 )

𝑘
for 𝑘 ∈ [𝐾 ] via polynomial interpolation.

26 Compute a secret share [X𝑇 �̂� (X × w(𝑡 ) ) ]𝑖 of the gradient X𝑇 �̂� (X × w(𝑡 ) ) as given in (38).
27 Update the model with [w(𝑡+1) ]𝑖 from (40).

// Final Model Recovery

28 Collect the secret shares [w(𝐽 ) ]𝑖 from any 𝑇 + 1 clients.
29 Decode the final model w(𝐽 ) via polynomial interpolation.

plexity 𝑂 (𝑁 𝑑
𝑁−𝑇 log2 𝑇 log log𝑇) for each client. Evaluating

the secret shares {[a𝑘 ]𝑖}𝑘∈[𝐾 ] has an overhead of 𝑂 (𝑁𝑑) per
client.

Stage 3: Computing the secret share {[w(0)
𝑖
] 𝑗 } 𝑗∈[𝑁 ] requires

evaluating a polynomial of degree 𝑇 at 𝑁 points, which has
complexity 𝑂 (𝑁 𝑑

𝑁−𝑇 log2 𝑇 log log𝑇) for each client. Finally,
computation of the final secret share, w(0) from (20) has
complexity 𝑂 (𝑁𝑑) per client.

Stage 4: Computation of r̃(𝑡)
𝑖 𝑗

requires evaluating a Lagrange
polynomial of degree 𝐾 + 𝑇 − 1 at 𝑁 points, which has a
complexity of 𝑂 (𝑁 𝑑

𝑁−𝑇 log2 (𝐾 +𝑇) log log(𝐾 +𝑇)) per client.
Given {̃r(𝑡)

𝑗𝑖
} 𝑗∈[𝑁 ] , the computation of r̃(𝑡)

𝑖
from (23) has an

overhead of 𝑂 (𝑁𝑑) per client. Constructing the secret share
[r(𝑡)
𝑖
] 𝑗 requires evaluating a polynomial of degree 𝑇 at 𝑁

points, which has complexity 𝑂 (𝑁 𝑑
𝑁−𝑇 log2 𝑇 log log𝑇) for

each client. Afterwards, creating the secret share [r(𝑡) ]𝑖 has

a complexity of 𝑂 (𝑁𝑑) per client. Overall, this stage has
a per client computational overhead of 𝑂 (𝑁 𝑑

𝑁−𝑇 log2 (𝐾 +
𝑇) log log(𝐾 +𝑇) + 𝑁𝑑) per training round. For 𝐽 rounds, this
leads to an overhead of 𝑂 (𝐽𝑁 𝑑

𝑁−𝑇 log2 (𝐾+𝑇) log log(𝐾+𝑇)+
𝐽𝑁𝑑) per client.
Stage 5: Computing {ũ(𝑡)

𝑖 𝑗
} 𝑗∈[𝑁 ] requires evaluating a La-

grange polynomial of degree (2𝑟 + 1) (𝐾 +𝑇 − 1) at 𝑁 points,
which has a complexity of 𝑂 (𝑁 𝑑

𝑁−𝑇 log2 𝑟 (𝐾+𝑇) log log 𝑟 (𝐾+
𝑇)) per client per training round. Given {ũ(𝑡)

𝑗𝑖
} 𝑗∈[𝑁 ] , compu-

tation of ũ(𝑡)
𝑖

in (31) has complexity of 𝑂 (𝑁𝑑) per client per
training round. Next, computing

∑
𝑘∈[𝐾 ] u

(𝑡)
𝑖𝑘

has a computa-
tional overhead of 𝑂 (𝐾 𝑑

𝑁−𝑇 ) per client per training round.
Computing the secret shares {[∑𝑘∈[𝐾 ] u

(𝑡)
𝑖𝑘
] 𝑗 } 𝑗∈[𝑁 ] requires

evaluating a polynomial of degree 𝑇 at 𝑁 points, which
incurs a complexity of 𝑂 (𝑁 𝑑

𝑁−𝑇 log2 𝑇 log log𝑇) per client
per training round. Finally, given {[∑𝑘∈[𝐾 ] u

(𝑡)
𝑗𝑘
]𝑖} 𝑗∈[𝑁 ] , the
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TABLE III: Comparison of the total communication overhead (across all 𝑁 clients) for PICO and COPML where 𝑚𝑖 = 𝑚 for 𝑖 ∈ [𝑁 ], 𝐾 = Θ(𝑁 ) , and
𝑇 = 𝑂 (𝑁 ) .

COPML PICO

1. Dataset encoding 𝑂 (𝑁 2𝑑𝑚 + 𝑁𝑑𝑚) (online) 𝑂 (𝑁𝑑𝑚)
(offline) 𝑂 (𝑁𝑑𝑚)

2. Label encoding 𝑂 (𝑁 2𝑚 + 𝑁 2𝑑) (online) 𝑂 (𝑁𝑑)
(offline) 𝑂 (𝑁𝑑)

3. Model initialization 𝑂 (𝑁 2𝑑) (online) −
(offline) 𝑂 (𝑁𝑑)

4. Model encoding 𝑂 (𝑁 2𝑑𝐽 ) (online) 𝑂 (𝑁𝑑𝐽 )
(offline) 𝑂 (𝑁𝑑𝐽 )

5. Gradient computing and model update 𝑂 (𝑁 2𝑑𝐽 ) (online) 𝑂 (𝑁𝑑𝐽 )
(offline) 𝑂 (𝑁𝑑𝐽 )

computation of [∑𝑘∈[𝐾 ] u
(𝑡)
𝑘
]𝑖 has complexity of 𝑂 (𝑁𝑑) per

client per training round. For 𝐽 iterations, the computational
complexity is 𝑂 (𝐽𝑁 𝑑

𝑁−𝑇 log2 𝑟 (𝐾 +𝑇) log log 𝑟 (𝐾 +𝑇) + 𝐽𝑁𝑑)
per client.

Overall, the computation complexity of the offline phase
is 𝑂 (𝑁𝑑 𝑚

𝐾
log2 (𝐾 + 𝑇) log log(𝐾 + 𝑇) + 𝐽𝑁 𝑑

𝑁−𝑇 log2 𝑟 (𝐾 +
𝑇) log log 𝑟 (𝐾 + 𝑇) + 𝐽𝑁𝑑) per client.
Online Phase. The online phase consists of encoding the
dataset and the model, gradient computations, and model
update.
Stage 1: Computing {X̂𝑖𝑘 }𝑘∈[𝐾 ] has an overhead of 𝑂 (𝑚𝑑)
per client, as each client holds a local dataset of size 𝑚 locally.
Computing X̃𝑖 has an overhead of 𝑂 (𝑁𝑚𝑑) per client.
Stage 2: Computation of XT

𝑖 y𝑖 has complexity of 𝑂 (𝑚𝑑)
per client. Computation of {ỹ𝑖 𝑗 } 𝑗∈[𝑁 ] requires evaluation of a
Lagrange polynomial of degree 𝐾 + 𝑇 − 1 at 𝑁 points, which
has a complexity of 𝑂 (𝑁 𝑑

𝐾
log2 (𝐾 + 𝑇) log log(𝐾 + 𝑇)) per

client. Given {ỹ 𝑗𝑖} 𝑗∈[𝑁 ] and ã𝑖 (from offline computation),
computation of â𝑖 incurs a complexity of 𝑂 (𝑁 𝑑

𝐾
) per client.

Next, upon receiving {â 𝑗 } 𝑗∈[𝑁 ] from at least 𝐾 + 𝑇 clients,
client 𝑖 recovers

∑
𝑗∈[𝑁 ] y 𝑗𝑘 − a𝑘 for all 𝑘 ∈ [𝐾], which has a

complexity of 𝑂 ( 𝑑
𝐾
(𝐾 +𝑇) log2 (𝐾 +𝑇) log log(𝐾 +𝑇)). Next,

computation of [X𝑇 y]𝑖 from (19) has a complexity of 𝑂 (𝑑)
per client.
Stage 4: Computing ŵ(𝑡) requires interpolating a polynomial
of degree 𝑇 , which has a complexity of 𝑂 (𝑇𝑑 log2 𝑇 log log𝑇)
per client per training round. Computing the encoded model
w̃(𝑡)
𝑖

has a computation overhead of 𝑂 (𝐾𝑑) per client. As
the above computation steps should be repeated at every
training round, for a total number of 𝐽 training iterations, the
computational overhead is 𝑂 (𝐾𝑑𝐽 + 𝑇𝑑𝐽 log2 𝑇 log log𝑇) per
client.
Stage 5: Computation of the gradient X̃𝑇

𝑖
�̂�(X̃𝑖 × w̃(𝑡)

𝑖
) has

an overhead of 𝑂 ( 𝑁𝑚
𝐾
(𝑑 + 𝑟)) per client, at each training

round. The computation of û𝑖 has an overhead of 𝑂 (𝑑)
per client. Then, each client recovers the polynomial 𝜓(𝛼),
which requires interpolating a polynomial of degree (2𝑟 +
1) (𝐾 + 𝑇 − 1), which has complexity 𝑂 (𝑑𝑟 (𝐾 + 𝑇) log2 𝑟 (𝐾 +
𝑇) log log 𝑟 (𝐾 + 𝑇)) per client. Finally, the summation to
obtain [X𝑇 �̂�(X × w(𝑡) )]𝑖 has a computational cost 𝑂 (𝐾𝑑)
per client. The computation overhead of model update is
𝑂 (𝑑). The above computation steps are repeated over 𝐽

training rounds. For 𝐽 rounds, the computation complexity is
𝑂 (𝐽 𝑁𝑚

𝐾
(𝑑 +𝑟) + 𝐽𝑑𝑟 (𝐾 +𝑇) log2 𝑟 (𝐾 +𝑇) log log 𝑟 (𝐾 +𝑇)) per

client.

Overall, computation complexity of the online phase is
𝑂 (𝑁𝑚𝑑+𝑁 𝑑

𝐾
log2 (𝐾+𝑇) log log(𝐾+𝑇)+𝐽 𝑁𝑚

𝐾
(𝑑+𝑟)+𝐽𝑑𝑟 (𝐾+

𝑇) log2 𝑟 (𝐾 + 𝑇) log log 𝑟 (𝐾 + 𝑇)) per client.
Computation complexity of PICO vs COPML. In Table IV,
we present the per-client computational complexity of PICO
versus COPML [7] for each stage. For a fair comparison,
we also consider the utilization of fast polynomial interpo-
lation mechanisms [84] for COPML (hence the complexity
we report is even lower than the one originally reported in
[7]). In Table V, we present the per-client computational
complexity for PICO (offline+online) and COPML, with 𝑇 =

𝑂 (𝑁) and 𝐾 = Θ(𝑁). We observe that the overall per-
client complexity (across all algorithm steps) is 𝑂 (𝑁𝑑𝑚 +
𝑑𝑚 log2 𝑁 log log 𝑁 + 𝐽𝑁𝑑 log2 𝑁 log log 𝑁 + 𝐽𝑚(𝑑 + 𝑟)) for
PICO and 𝑂 (𝑁𝑑𝑚 log2 𝑁 log log 𝑁 + 𝐽𝑁𝑑 log2 𝑁 log log 𝑁 +
𝐽𝑚(𝑑 + 𝑟)) for COPML, respectively. Hence, PICO achieves
the same computation complexity as COPML. This is due to
the fact that PICO reduces the overall number of variables
encoded, hence the additional operations due to the matrix
transformations with MDS matrices do not increase the overall
computation complexity.

APPENDIX D
INFORMATION-THEORETIC PRIVACY

Proof. For tractability of theoretical analysis, in this section
we consider a sufficiently large field size 𝑞, and treat all
training operations as integer operations [2]. This can be
achieved by considering a learning rate [ such that 𝑀 , 𝑚/[
is an integer and redefining the gradient computation at client
𝑖 from (35) as follows,

𝜑(𝛼𝑖) =
𝑟∑︁
𝑗=0
\ 𝑗𝑀

(𝑟− 𝑗)𝑎𝑡 X̃T
𝑖 (X̃𝑖 × w̃(𝑡)

𝑖
) 𝑗 (42)

where we define the polynomial 𝜑(𝛼) =∑𝑟
𝑗=0 \ 𝑗𝑀

(𝑟− 𝑗)𝑎𝑡 𝑓 (𝛼)T ( 𝑓 (𝛼) × ℎ(𝛼)) 𝑗 such that client 𝑖

computes 𝜑(𝛼𝑖), the exponent (·) 𝑗 is applied element-wise,
and coefficient 𝑎𝑡 is defined as,

𝑎𝑡 ,

{
0 for 𝑡 = 0

𝑟𝑎𝑡−1 + 1 for 𝑡 ≥ 1 (43)

whereas the true gradient is given by,∑︁
𝑘∈[𝐾 ]

𝜑(𝛽𝑘 ) =
𝑟∑︁
𝑗=0
\ 𝑗𝑀

(𝑟− 𝑗)𝑎𝑡 (X′𝑘 )T (X
′
𝑘 × w(𝑡) ) 𝑗
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TABLE IV: Comparison of the computation overhead (per client) for PICO and COPML with 𝑚𝑖 = 𝑚 for 𝑖 ∈ [𝑁 ].

COPML PICO

1. Dataset encoding 𝑂 (𝑁 2 𝑚
𝐾
𝑑 log2 (𝐾 +𝑇 ) log log(𝐾 +𝑇 )) (online) 𝑂 (𝑁𝑑𝑚)

(offline) 𝑂 (𝑁 𝑚
𝐾
𝑑 log2 (𝐾 +𝑇 ) log log(𝐾 +𝑇 ))

2. Label encoding 𝑂 (𝑁 (𝑚+𝑑) log2 𝑇 log log𝑇 ) (online) 𝑂 (𝑁 𝑑
𝐾

log2 (𝐾 +𝑇 ) log log(𝐾 +𝑇 ))

(offline)
𝑂 (𝑁 𝑑

(𝑁−𝑇 )𝐾 log2 (𝐾 +𝑇 ) log log(𝐾 +𝑇 )
+ 𝑁𝑑
𝐾
+ 𝑁 𝑑

𝑁−𝑇 log2 𝑇 log log𝑇 )
3. Model initialization 𝑂 (𝑁𝑑 log2 (𝐾 +𝑇 ) log log(𝐾 +𝑇 )) (online) −

(offline) 𝑂 (𝑁 𝑑
𝑁−𝑇 log2 𝑇 log log𝑇 + 𝑁𝑑)

4. Model encoding 𝑂 (𝐽𝑁 𝑑 log2 (𝐾 +𝑇 ) log log(𝐾 +𝑇 )) (online) 𝑂 (𝐾𝑑𝐽 +𝑇 𝑑𝐽 log2 𝑇 log log𝑇 )

(offline) 𝑂 (𝐽𝑁 𝑑
𝑁−𝑇 log2 (𝐾 +𝑇 ) log log(𝐾 +𝑇 )

+𝐽𝑁 𝑑)

5. Gradient comp./
model update

𝑂 (𝐽 𝑁𝑚
𝐾
(𝑑 + 𝑟 ) + 𝐽𝑑𝑟 (𝐾 +𝑇 )

× log2 𝑟 (𝐾 +𝑇 ) log log 𝑟 (𝐾 +𝑇 ))
(online)

𝑂 (𝐽 𝑁𝑚
𝐾
(𝑑 + 𝑟 ) + 𝐽𝑑𝑟 (𝐾 +𝑇 )

× log2 𝑟 (𝐾 +𝑇 ) log log 𝑟 (𝐾 +𝑇 ))

(offline) 𝑂 (𝐽𝑁 𝑑
𝑁−𝑇 log2 𝑟 (𝐾 +𝑇 )

× log log 𝑟 (𝐾 +𝑇 ) + 𝐽𝑁 𝑑)

TABLE V: Comparison of the computation overhead (per client) for PICO and COPML with 𝑚𝑖 = 𝑚 for 𝑖 ∈ [𝑁 ], 𝐾 = Θ(𝑁 ) , and 𝑇 = 𝑂 (𝑁 ) .

COPML PICO (online+offline)
1. Dataset encoding 𝑂 (𝑁𝑑𝑚 log2 𝑁 log log 𝑁) 𝑂 (𝑁𝑑𝑚 + 𝑑𝑚 log2 𝑁 log log 𝑁)
2. Label encoding 𝑂 (𝑁 (𝑚+𝑑) log2 𝑁 log log 𝑁) 𝑂 (𝑑 log2 𝑁 log log 𝑁)
3. Model initialization 𝑂 (𝑁𝑑 log2 𝑁 log log 𝑁) 𝑂 (𝑑 log2 𝑁 log log 𝑁 + 𝑁𝑑)
4. Model encoding 𝑂 (𝐽𝑁𝑑 log2 𝑁 log log 𝑁) 𝑂 (𝐽𝑁𝑑 log2 𝑁 log log 𝑁)
5. Gradient comp./
model update 𝑂 (𝐽𝑚(𝑑 + 𝑟) + 𝐽𝑁𝑑 log2 𝑁 log log 𝑁) 𝑂 (𝐽𝑚(𝑑 + 𝑟) + 𝐽𝑁𝑑 log2 𝑁 log log 𝑁))

=

𝑟∑︁
𝑗=0
\ 𝑗𝑀

(𝑟− 𝑗)𝑎𝑡XT (X × w(𝑡) ) 𝑗 (44)

such that X′𝑘 , 𝑓 (𝛽𝑘 ) =

[
XT

1𝑘 · · · XT
𝑁 𝑘

]T
from (12),

replacing (35) and (36), respectively. After collecting û(𝑡)
𝑖

=

𝜓(𝛼𝑖) from any set of at least 𝐶+1 clients, client 𝑖 can recover
𝜓(𝛼) via polynomial interpolation, compute a secret share of
the gradient

∑
𝑘∈[𝐾 ] 𝜑(𝛽𝑘 ),[ ∑︁

𝑘∈[𝐾 ]
𝜑(𝛽𝑘 )

]
𝑖
,

∑︁
𝑘∈[𝐾 ]

𝜓(𝛽𝑘 ) +
[ ∑︁
𝑘∈[𝐾 ]

u(𝑡)
𝑘

]
𝑖

(45)

=
∑︁
𝑘∈[𝐾 ]

𝜑(𝛽𝑘 ) +
∑︁
𝑙∈[𝑇 ]

𝛾𝑙𝑖z
(𝑡)
𝑙

(46)

and update the model as,

[w(𝑡+1) ]𝑖 = 𝑀 (𝑟−1)𝑎𝑡+1 [w(𝑡) ]𝑖 −
( [ ∑︁
𝑘∈[𝐾 ]

𝜑(𝛽𝑘 )
]
𝑖

− 𝑀𝑟𝑎𝑡 [XTy]𝑖
)
. (47)

replacing the model update operation from (40). After 𝐽

training rounds, clients collect the secret shares {[w(𝐽 ) ]𝑖}𝑖∈[𝑁 ]
to decode w(𝐽 ) , and compute the final model as w(𝐽 ) ←
w(𝐽 )/𝑀𝑎𝐽 . The correctness of the model update operations
from (47) are provided in Appendix E.

We next present the information-theoretic privacy analysis
for PICO. Consider an arbitrary set of adversaries T ⊆ 𝑁 .
For ease of exposition, we focus on the worst case scenario
by setting |T | = 𝑇 , while noting that the same analysis holds
for all |T | < 𝑇 . Let M1

T and M2
T , denote the collection of

all messages received by the adversaries during the dataset
encoding (Stage 1), and label encoding (Stage 2) stages,
respectively. Let M3

T denote the collection of all messages

received by the adversaries during model initialization stage
(Stage 3). Similarly, let M4,𝑡

T denote the collection of all
messages received by the adversaries in model encoding
stage (Stage 4) at training round 𝑡 ∈ {0, . . . , 𝐽 − 1}. Let
M5,𝑡
T denote the collection of all messages received by the

adversaries during the gradient computing and model update
stage (Stage 5) at training round 𝑡 ∈ {0, . . . , 𝐽 − 1}. Finally,
let M6

T denote the collection of all messages received by the
adversaries during the reconstruction of the final model w(𝐽 )
after 𝐽 training rounds. Then, from the chain rule of mutual
information [71], one can rewrite (41) as follows:

𝐼 ({X𝑖 , y𝑖}𝑖∈H ;MT |{X𝑖 , y𝑖}𝑖∈T ,w
(𝐽 ) )

= 𝐼 ({X𝑖 , y𝑖}𝑖∈H ;M1
T ,M

2
T ,M

3
T ,

∪𝑡 ∈[𝐽 ]M4,𝑡
T ,∪𝑡 ∈[𝐽 ]M

5,𝑡
T ,M

6
T |{X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 ) ) (48)

= 𝐼 ({X𝑖 , y𝑖}𝑖∈H ;M1
T |{X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 ) )
+ 𝐼 ({X𝑖 , y𝑖}𝑖∈H ;M2

T |M
1
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 ) )
+ 𝐼 ({X𝑖 , y𝑖}𝑖∈H ;M3

T |M
1
T ,M

2
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 ) )

+
𝐽−1∑︁
𝑡=0

𝐼 ({X𝑖 , y𝑖}𝑖∈H ;M4,𝑡
T |M

1
T ,M

2
T ,M

3
T ,

∪𝑡−1
𝑙=0 M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 ) )

+
𝐽−1∑︁
𝑡=0

𝐼 ({X𝑖 , y𝑖}𝑖∈H ;M5,𝑡
T |M

1
T ,M

2
T ,M

3
T ,

∪𝑡𝑙=0M
4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 ) )
+ 𝐼 ({X𝑖 , y𝑖}𝑖∈H ;M6

T |M
1
T ,M

2
T ,M

3
T ,

∪𝐽−1
𝑙=0 M

4,𝑙
T ,∪

𝐽−1
𝑙=0 M

5,𝑙
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 ) ) (49)

We next investigate each term in the summation (49).

Stage 1: Dataset Encoding. First, we start with the first term
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in (49), which corresponds to Stage 1 of PICO, i.e., encoding
the datasets. For this stage, the first term in the right hand side
of (49) can be written as:

𝐼 ({X𝑖 , y𝑖}𝑖∈H ;M1
T |{X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 ) )
= 𝐼 ({X𝑖 , y𝑖}𝑖∈H ; {R̃𝑖 𝑗 } 𝑗∈T

𝑖∈H
, {R𝑖𝑘 } 𝑖∈T

𝑘∈[𝐾 ]
, {V𝑖𝑘 } 𝑖∈T

𝑘∈{𝐾+1,...,𝐾+𝑇 }
,

{X̂𝑖𝑘 } 𝑖∈[𝑁 ]
𝑘∈[𝐾 ]

|{X𝑖 , y𝑖}𝑖∈T ,w
(𝐽 ) ) (50)

= 𝐻 ({R̃𝑖 𝑗 } 𝑗∈T
𝑖∈H

, {R𝑖𝑘 } 𝑖∈T
𝑘∈[𝐾 ]

, {V𝑖𝑘 } 𝑖∈T
𝑘∈{𝐾+1,...,𝐾+𝑇 }

,

{X̂𝑖𝑘 } 𝑖∈[𝑁 ]
𝑘∈[𝐾 ]

|{X𝑖 , y𝑖}𝑖∈T ,w
(𝐽 ) )

− 𝐻 ({R̃𝑖 𝑗 } 𝑗∈T
𝑖∈H

, {R𝑖𝑘 } 𝑖∈T
𝑘∈[𝐾 ]

, {V𝑖𝑘 } 𝑖∈T
𝑘∈{𝐾+1,...,𝐾+𝑇 }

,

{X̂𝑖𝑘 } 𝑖∈[𝑁 ]
𝑘∈[𝐾 ]

|{X𝑖 , y𝑖}𝑖∈[𝑁 ] ,w
(𝐽 ) ) (51)

We next bound the first term in (51) as follows:

𝐻 ({R̃𝑖 𝑗 } 𝑗∈T
𝑖∈H

, {R𝑖𝑘 } 𝑖∈T
𝑘∈[𝐾 ]

, {V𝑖𝑘 } 𝑖∈T
𝑘∈{𝐾+1,...,𝐾+𝑇 }

,

{X̂𝑖𝑘 } 𝑖∈[𝑁 ]
𝑘∈[𝐾 ]

|{X𝑖 , y𝑖}𝑖∈T ,w
(𝐽 ) )

= 𝐻 ({R̃𝑖 𝑗 } 𝑗∈T
𝑖∈H

, {R𝑖𝑘 } 𝑖∈T
𝑘∈[𝐾 ]

, {V𝑖𝑘 } 𝑖∈T
𝑘∈{𝐾+1,...,𝐾+𝑇 }

,

{X̂𝑖𝑘 } 𝑖∈H
𝑘∈[𝐾 ]

|{X𝑖 , y𝑖}𝑖∈T ,w
(𝐽 ) ) (52)

≤ 𝐻 ({R̃𝑖 𝑗 } 𝑗∈T
𝑖∈H

, {R𝑖𝑘 } 𝑖∈T
𝑘∈[𝐾 ]

, {V𝑖𝑘 } 𝑖∈T
𝑘∈{𝐾+1,...,𝐾+𝑇 }

,

{X̂𝑖𝑘 } 𝑖∈H
𝑘∈[𝐾 ]

) (53)

≤ log
(
𝑞 (

∑
𝑖∈H

𝑇 𝑑𝑚𝑖
𝐾
)+(∑𝑖∈T 𝑑𝑚𝑖)+(∑𝑖∈T 𝑇 𝑑𝑚𝑖𝐾

)+(∑𝑖∈H 𝑑𝑚𝑖) ) (54)

= 𝑑

( 𝑇
𝐾
+ 1

) ( ∑︁
𝑖∈[𝑁 ]

𝑚𝑖

)
log 𝑞 (55)

where (53) holds since conditioning cannot increase entropy.
Equation (54) follows from the fact that uniform distribution
maximizes entropy, and that the entropy of a uniform random
variable distributed over an alphabet A is equal to log |A|.
For the second term in (51), we find that,

𝐻 ({R̃𝑖 𝑗 } 𝑗∈T
𝑖∈H

, {R𝑖𝑘 } 𝑖∈T
𝑘∈[𝐾 ]

, {V𝑖𝑘 } 𝑖∈T
𝑘∈{𝐾+1,...,𝐾+𝑇 }

,

{X̂𝑖𝑘 } 𝑖∈[𝑁 ]
𝑘∈[𝐾 ]

|{X𝑖 , y𝑖}𝑖∈[𝑁 ] ,w
(𝐽 ) )

= 𝐻 ({R̃𝑖 𝑗 } 𝑗∈T
𝑖∈H

, {R𝑖𝑘 } 𝑖∈[𝑁 ]
𝑘∈[𝐾 ]

, {V𝑖𝑘 } 𝑖∈T
𝑘∈{𝐾+1,...,𝐾+𝑇 }

,

{R𝑖𝑘 } 𝑖∈[𝑁 ]
𝑘∈[𝐾 ]

|{X𝑖 , y𝑖}𝑖∈[𝑁 ] ,w
(𝐽 ) ) (56)

= 𝐻 ({R̃𝑖 𝑗 } 𝑗∈T
𝑖∈H

, {R𝑖𝑘 } 𝑖∈[𝑁 ]
𝑘∈[𝐾 ]

, {V𝑖𝑘 } 𝑖∈T
𝑘∈{𝐾+1,...,𝐾+𝑇 }

) (57)

= 𝐻 ({R̃𝑖 𝑗 } 𝑗∈T
𝑖∈H
|{R𝑖𝑘 } 𝑖∈[𝑁 ]

𝑘∈[𝐾 ]
, {V𝑖𝑘 } 𝑖∈T

𝑘∈{𝐾+1,...,𝐾+𝑇 }
)

+ 𝐻 ({V𝑖𝑘 } 𝑖∈T
𝑘∈{𝐾+1,...,𝐾+𝑇 }

|{R𝑖𝑘 } 𝑖∈[𝑁 ]
𝑘∈[𝐾 ]

) + 𝐻 ({R𝑖𝑘 } 𝑖∈[𝑁 ]
𝑘∈[𝐾 ]

)

(58)

= 𝐻 ({R̃𝑖 𝑗 } 𝑗∈T
𝑖∈H
|{R𝑖𝑘 } 𝑖∈[𝑁 ]

𝑘∈[𝐾 ]
, {V𝑖𝑘 } 𝑖∈T

𝑘∈{𝐾+1,...,𝐾+𝑇 }
)

+ 𝐻 ({V𝑖𝑘 } 𝑖∈T
𝑘∈{𝐾+1,...,𝐾+𝑇 }

) + 𝐻 ({R𝑖𝑘 } 𝑖∈[𝑁 ]
𝑘∈[𝐾 ]

) (59)

= 𝐻

({ 𝐾+𝑇∑︁
𝑘=𝐾+1

V𝑖𝑘
∏

𝑙∈[𝐾+𝑇 ]\{𝑘 }

𝛼 𝑗 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

}
𝑖∈H
𝑗∈T

)
+ log(𝑞𝑇 𝑑

∑
𝑖∈T

𝑚𝑖
𝐾 ) + log(𝑞𝐾𝑑

∑
𝑖∈[𝑁 ]

𝑚𝑖
𝐾 ) (60)

=
∑︁
𝑖∈H

𝐻

({ 𝐾+𝑇∑︁
𝑘=𝐾+1

V𝑖𝑘
∏

𝑙∈[𝐾+𝑇 ]\{𝑘 }

𝛼 𝑗 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

}
𝑗∈T

)
+ 𝑇𝑑
𝐾
(
∑︁
𝑖∈T

𝑚𝑖) log 𝑞 + 𝑑 (
∑︁
𝑖∈[𝑁 ]

𝑚𝑖) log 𝑞 (61)

=
∑︁
𝑖∈H

𝐻 ({Z𝑖 𝑗 } 𝑗∈T) +
𝑇𝑑

𝐾
(
∑︁
𝑖∈T

𝑚𝑖) log 𝑞 + 𝑑 (
∑︁
𝑖∈[𝑁 ]

𝑚𝑖) log 𝑞

(62)

where (56) holds since given {X𝑖 , y𝑖}𝑖∈[𝑁 ] , there is no un-
certainty remaining in {𝑋𝑖𝑘 }𝑖∈[𝑁 ],𝑘∈[𝐾 ] , (57) holds since the
generated randomness is independent from the local datasets,
(58) follows from the chain rule of entropy, (59) holds since
the random matrices are generated independently where each
element is distributed uniformly at random (and independent
from other elements) from the finite field F𝑞 . In (62), we
define:

Z𝑖 𝑗 ,
𝐾+𝑇∑︁
𝑘=𝐾+1

V𝑖𝑘
∏

𝑙∈[𝐾+𝑇 ]\{𝑘 }

𝛼 𝑗 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

(63)

for all 𝑖 ∈ H and 𝑗 ∈ T . In the following, without loss of
generality we let the first 𝑁 − 𝑇 clients be honest (the last 𝑇
clients are adversarial), i.e., H = [𝑁 − 𝑇] and T = {𝑁 − 𝑇 +
1, . . . , 𝑁}. The assumption is for notational simplicity, and the
same analysis holds for any set of adversarial clients T of size
𝑇 . We also represent the Lagrange polynomial coefficients as:

𝜌 𝑗𝑘 ,
∏

𝑙∈[𝐾+𝑇 ]\{𝑘 }

𝛼 𝑗 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

(64)

for all 𝑗 ∈ [𝑁] and 𝑘 ∈ [𝐾 + 𝑇]. Then, from (63), one can
write:[

Z𝑖,𝑁−𝑇 +1 · · · Z𝑖,𝑁
]
=

[
V𝑖,𝐾+1 · · · V𝑖,𝐾+𝑇

]
𝚪 (65)

where

𝚪 ,


𝜌𝑁−𝑇 +1,𝐾+1 · · · 𝜌𝑁 ,𝐾+1

...
. . .

...

𝜌𝑁−𝑇 +1,𝐾+𝑇 · · · 𝜌𝑁 ,𝐾+𝑇

 (66)

is a 𝑇 × 𝑇 MDS matrix (hence is invertible), which follows
from the MDS property of Lagrange coding as shown in [6].
An MDS matrix guarantees that (65) is a bijective mapping,
hence,

𝐻 ({Z𝑖 𝑗 } 𝑗∈T) = 𝐻 (Z𝑖,𝑁−𝑇 +1, . . . ,Z𝑖,𝑁 ) (67)
= 𝐻 (V𝑖,𝐾+1, . . . ,V𝑖,𝐾+𝑇 ) (68)

=
𝑇𝑑𝑚𝑖

𝐾
log 𝑞 (69)

where (68) is from (65) and that 𝚪 is an MDS matrix, and
(69) holds since each element of V𝑖𝑘 is distributed uniformly
at random over F𝑞 . By combining (69) with (62), we have:

𝐻

(
{R̃𝑖 𝑗 } 𝑗∈T

𝑖∈H
, {R𝑖𝑘 } 𝑖∈T

𝑘∈[𝐾 ]
, {V𝑖𝑘 } 𝑖∈T

𝑘∈{𝐾+1,...,𝐾+𝑇 }
,
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{X̂𝑖𝑘 } 𝑖∈[𝑁 ]
𝑘∈[𝐾 ]

���{X𝑖 , y𝑖}𝑖∈[𝑁 ] ,w(𝐽 ) )
=

( ∑︁
𝑖∈H

𝑇𝑑𝑚𝑖

𝐾
log 𝑞

)
+ 𝑇𝑑
𝐾

(∑︁
𝑖∈T

𝑚𝑖

)
log 𝑞 + 𝑑

(∑︁
𝑖∈T

𝑚𝑖

)
log 𝑞

(70)

= 𝑑

( 𝑇
𝐾
+ 1

) ( ∑︁
𝑖∈[𝑁 ]

𝑚𝑖

)
log 𝑞 (71)

Finally, by combining (54) and (71) with (51), we have:

0 ≤ 𝐼 ({X𝑖 , y𝑖}𝑖∈H ;M1
T |{X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 ) ) (72)

= 𝐻

(
{R̃𝑖 𝑗 } 𝑗∈T

𝑖∈H
, {R𝑖𝑘 } 𝑖∈T

𝑘∈[𝐾 ]
, {V𝑖𝑘 } 𝑖∈T

𝑘∈{𝐾+1,...,𝐾+𝑇 }
,

{X̂𝑖𝑘 } 𝑖∈[𝑁 ]
𝑘∈[𝐾 ]

���{X𝑖 , y𝑖}𝑖∈T ,w(𝐽 ) )
− 𝐻

(
{R̃𝑖 𝑗 } 𝑗∈T

𝑖∈H
, {R𝑖𝑘 } 𝑖∈T

𝑘∈[𝐾 ]
, {V𝑖𝑘 } 𝑖∈T

𝑘∈{𝐾+1,...,𝐾+𝑇 }
,

{X̂𝑖𝑘 } 𝑖∈[𝑁 ]
𝑘∈[𝐾 ]

���{X𝑖 , y𝑖}𝑖∈[𝑁 ] ,w(𝐽 ) ) (73)

≤ 𝑑
( 𝑇
𝐾
+ 1

) ( ∑︁
𝑖∈[𝑁 ]

𝑚𝑖

)
log 𝑞 − 𝑑

( 𝑇
𝐾
+ 1

) ( ∑︁
𝑖∈[𝑁 ]

𝑚𝑖

)
log 𝑞

(74)
= 0 (75)

where the first inequality follows from the non-negativity of
mutual information. Therefore, the first term in (49) satisfies
the following:

𝐼 ({X𝑖 , y𝑖}𝑖∈H ;M1
T |{X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 ) ) = 0 (76)

Stage 2: Label Encoding. We next consider the second term
in (49), which corresponds to the secret sharing of the labels.
Without loss of generality, we represent the secret share of a𝑖𝑘
from client 𝑖 to client 𝑗 as follows:

[a𝑖𝑘 ] 𝑗 , a𝑖𝑘 +
∑︁
𝑙∈[𝑇 ]

𝛾𝑙𝑗e𝑖𝑘𝑙 (77)

where e𝑖𝑘𝑙 are random vectors of size 𝑑
𝐾

, where each element
is distributed independently and uniformly at random from F𝑞 .
Coefficients {𝛾𝑖}𝑖∈[𝑁 ] are distinct public parameters agreed in
advance between all 𝑁 clients, where 𝛾𝑖 ∈ F𝑞 for all 𝑖 ∈ [𝑁]
such that {𝛾𝑖}𝑖∈[𝑁 ] ∩ {𝛽𝑘 }𝑘∈[𝐾+𝑇 ] ∩ {𝛼 𝑗 } 𝑗∈[𝑁 ] = ∅. Using
(77), we can rewrite the second term in (49) as follows:

𝐼 ({X𝑖 , y𝑖}𝑖∈H ;M2
T |M

1
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 ) )
= 𝐼 ({X𝑖 , y𝑖}𝑖∈H ; {ã𝑖 𝑗 , [a𝑖𝑘 ] 𝑗 }𝑖∈H, 𝑗∈T ,𝑘∈[𝐾 ] , {â𝑖}𝑖∈[𝑁 ] ,
{r𝑖𝑘 , b𝑖𝑘 , a𝑖𝑘′ , e𝑖𝑘′𝑙}𝑖∈T ,𝑘′∈[𝐾 ],𝑙∈[𝑇 ]

𝑘∈{𝐾+1,...,𝐾+𝑇 }
|M1
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 ) )

(78)

= 𝐼 ({X𝑖 , y𝑖}𝑖∈H ; {ã𝑖 𝑗 , [a𝑖𝑘 ] 𝑗 }𝑖∈H, 𝑗∈T ,𝑘∈[𝐾 ] ,
{

∑︁
𝑗∈[𝑁 ]

y 𝑗𝑘 − a𝑘 }𝑘∈[𝐾 ] , {
∑︁
𝑗∈[𝑁 ]

r 𝑗𝑘 − b𝑘 }𝑘∈{𝐾+1,...,𝐾+𝑇 },

{r𝑖𝑘 , b𝑖𝑘 , a𝑖𝑘′ , e𝑖𝑘′𝑙}𝑖∈T ,𝑘′∈[𝐾 ],𝑙∈[𝑇 ]
𝑘∈{𝐾+1,...,𝐾+𝑇 }

|M1
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 ) )

(79)
= 𝐻 ({ã𝑖 𝑗 , [a𝑖𝑘 ] 𝑗 }𝑖∈H, 𝑗∈T ,𝑘∈[𝐾 ] ,

{
∑︁
𝑗∈[𝑁 ]

y 𝑗𝑘 − a𝑘 }𝑘∈[𝐾 ] , {
∑︁
𝑗∈[𝑁 ]

r 𝑗𝑘 − b𝑘 }𝑘∈{𝐾+1,...,𝐾+𝑇 },

{r𝑖𝑘 , b𝑖𝑘 , a𝑖𝑘′ , e𝑖𝑘′𝑙}𝑖∈T ,𝑘′∈[𝐾 ],𝑙∈[𝑇 ]
𝑘∈{𝐾+1,...,𝐾+𝑇 }

|M1
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 ) )

− 𝐻 ({ã𝑖 𝑗 , [a𝑖𝑘 ] 𝑗 }𝑖∈H, 𝑗∈T ,𝑘∈[𝐾 ] , {
∑︁
𝑗∈[𝑁 ]

y 𝑗𝑘 − a𝑘 }𝑘∈[𝐾 ] ,

{
∑︁
𝑗∈[𝑁 ]

r 𝑗𝑘 − b𝑘 }𝑘∈{𝐾+1,...,𝐾+𝑇 },

{r𝑖𝑘 , b𝑖𝑘 , a𝑖𝑘′ , e𝑖𝑘′𝑙}𝑖∈T ,𝑘′∈[𝐾 ],𝑙∈[𝑇 ]
𝑘∈{𝐾+1,...,𝐾+𝑇 }

|M1
T , {X𝑖 , y𝑖}𝑖∈[𝑁 ] ,w

(𝐽 ) )

(80)

where (79) follows from the fact that any polynomial of
degree 𝐾 + 𝑇 − 1 can be determined from at least 𝐾 + 𝑇
evaluation points, therefore there is a bijective mapping from
any feasible set {â𝑖}𝑖∈[𝑁 ] to a set of 𝐾 + 𝑇 coefficients
{∑ 𝑗∈[𝑁 ] y 𝑗𝑘−a𝑘 }𝑘∈[𝐾 ] , {

∑
𝑗∈[𝑁 ] r 𝑗𝑘−b𝑘 }𝑘∈{𝐾+1,...,𝐾+𝑇 }. For

the second term in (80), we find that,

𝐻 ({ã𝑖 𝑗 , [a𝑖𝑘 ] 𝑗 }𝑖∈H, 𝑗∈T ,𝑘∈[𝐾 ] ,
{

∑︁
𝑗∈[𝑁 ]

y 𝑗𝑘 − a𝑘 }𝑘∈[𝐾 ] , {
∑︁
𝑗∈[𝑁 ]

r 𝑗𝑘 − b𝑘 }𝑘∈{𝐾+1,...,𝐾+𝑇 },

{r𝑖𝑘 , b𝑖𝑘 , a𝑖𝑘′ , e𝑖𝑘′𝑙}𝑖∈T ,𝑘′∈[𝐾 ],𝑙∈[𝑇 ]
𝑘∈{𝐾+1,...,𝐾+𝑇 }

|M1
T , {X𝑖 , y𝑖}𝑖∈[𝑁 ] ,w

(𝐽 ) )

= 𝐻 ({ã𝑖 𝑗 , [a𝑖𝑘 ] 𝑗 }𝑖∈H, 𝑗∈T ,𝑘∈[𝐾 ] , {a𝑘 }𝑘∈[𝐾 ] ,
{

∑︁
𝑗∈[𝑁 ]

r 𝑗𝑘 − b𝑘 }𝑘∈{𝐾+1,...,𝐾+𝑇 },

{r𝑖𝑘 , b𝑖𝑘 , a𝑖𝑘′ , e𝑖𝑘′𝑙}𝑖∈T ,𝑘′∈[𝐾 ],𝑙∈[𝑇 ]
𝑘∈{𝐾+1,...,𝐾+𝑇 }

|M1
T , {X𝑖 , y𝑖}𝑖∈[𝑁 ] ,

w(𝐽 ) ) (81)
= 𝐻 ({ã𝑖 𝑗 , [a𝑖𝑘 ] 𝑗 }𝑖∈H, 𝑗∈T ,𝑘∈[𝐾 ] ,{
(M ⊗ I)

[
aT

1𝑘 · · · aT
𝑁 𝑘

]T
}
𝑘∈[𝐾 ]

,{ ∑︁
𝑗∈[𝑁 ]

r 𝑗𝑘 − (M ⊗ I)
[
bT

1𝑘 · · · bT
𝑁 𝑘

]T
}
𝑘∈{𝐾+1,...,𝐾+𝑇 }

,

{r𝑖𝑘 , b𝑖𝑘 , a𝑖𝑘′ , e𝑖𝑘′𝑙}𝑖∈T ,𝑘′∈[𝐾 ],𝑙∈[𝑇 ]
𝑘∈{𝐾+1,...,𝐾+𝑇 }

|M1
T , {X𝑖 , y𝑖}𝑖∈[𝑁 ] ,

w(𝐽 ) ) (82)
= 𝐻 ({ã𝑖 𝑗 , [a𝑖𝑘 ] 𝑗 }𝑖∈H, 𝑗∈T ,𝑘∈[𝐾 ] ,{
(M ⊗ I)

[
aT

1𝑘 · · · aT
(𝑁−𝑇 )𝑘

]T }
𝑘∈[𝐾 ]

,

{ ∑︁
𝑗∈[𝑁−𝑇 ]

r 𝑗𝑘−

(M ⊗ I)
[
bT

1𝑘 · · · bT
(𝑁−𝑇 )𝑘

]T }
𝑘∈{𝐾+1,...,𝐾+𝑇 }

,

{r𝑖𝑘 , b𝑖𝑘 , a𝑖𝑘′ , e𝑖𝑘′𝑙}𝑖∈T ,𝑘′∈[𝐾 ],𝑙∈[𝑇 ]
𝑘∈{𝐾+1,...,𝐾+𝑇 }

|M1
T , {X𝑖 , y𝑖}𝑖∈[𝑁 ] ,

w(𝐽 ) ) (83)
= 𝐻 ({ã𝑖 𝑗 , [a𝑖𝑘 ] 𝑗 }𝑖∈H, 𝑗∈T ,𝑘∈[𝐾 ] ,{ [

aT
1𝑘 · · · aT

(𝑁−𝑇 )𝑘

]T }
𝑘∈[𝐾 ]

,

{ ∑︁
𝑗∈[𝑁−𝑇 ]

r 𝑗𝑘

− (M ⊗ I)
[
bT

1𝑘 · · · bT
(𝑁−𝑇 )𝑘

]T }
𝑘∈{𝐾+1,...,𝐾+𝑇 }

)

+ 𝐻 ({r𝑖𝑘 , b𝑖𝑘 , a𝑖𝑘′ , e𝑖𝑘′𝑙}𝑖∈T ,𝑘′∈[𝐾 ],𝑙∈[𝑇 ],𝑘∈{𝐾+1,...,𝐾+𝑇 })
(84)
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= 𝐻 ({ã𝑖 𝑗 , [a𝑖𝑘 ] 𝑗 }𝑖∈H, 𝑗∈T ,𝑘∈[𝐾 ] , {a 𝑗𝑘 } 𝑗∈[𝑁−𝑇 ],𝑘∈[𝐾 ] ,
{

∑︁
𝑗∈[𝑁−𝑇 ]

r 𝑗𝑘 − (M ⊗ I) b𝑘 }𝑘∈{𝐾+1,...,𝐾+𝑇 })

+ 𝑇𝑑
( 𝑇
𝐾
+ 𝑇

𝐾 (𝑁 − 𝑇) +
1

𝑁 − 𝑇 +
𝑇

𝑁 − 𝑇

)
log 𝑞 (85)

where (81) follows from the fact that given {X𝑖 , y𝑖}𝑖∈[𝑁 ] , there
is no uncertainty in

∑
𝑗∈[𝑁 ] y 𝑗𝑘 for all 𝑘 ∈ [𝐾]. In (83), we

define the following square submatrix of M from (16),

M ,


1 _1 . . . _𝑁−𝑇 −1

1
1 _2 . . . _𝑁−𝑇 −1

2
...

...
. . .

...

1 _𝑁−𝑇 . . . _𝑁−𝑇 −1
𝑁−𝑇


(86)

which is an (𝑁−𝑇)×(𝑁−𝑇) MDS matrix (hence is invertible),
from which (84) follows. Equation (85) follows from the
entropy of uniform random variables, and,

b𝑘 ,


b1𝑘
...

b(𝑁−𝑇 )𝑘

 (87)

For the first term in (85), we find that,

𝐻 ({ã𝑖 𝑗 , [a𝑖𝑘 ] 𝑗 }𝑖∈H, 𝑗∈T ,𝑘∈[𝐾 ] , {a 𝑗𝑘 } 𝑗∈[𝑁−𝑇 ],𝑘∈[𝐾 ] ,
{

∑︁
𝑗∈[𝑁−𝑇 ]

r 𝑗𝑘 − (M ⊗ I) b𝑘 }𝑘∈{𝐾+1,...,𝐾+𝑇 })

= 𝐻 ({ã𝑖 𝑗 }𝑖∈H, 𝑗∈T ,
{

∑︁
𝑗∈[𝑁−𝑇 ]

r 𝑗𝑘 − (M ⊗ I) b𝑘 }𝑘∈{𝐾+1,...,𝐾+𝑇 }

|{[a𝑖𝑘 ] 𝑗 }𝑖∈H, 𝑗∈T ,
𝑘∈[𝐾 ]

, {a 𝑗𝑘 } 𝑗∈[𝑁−𝑇 ],
𝑘∈[𝐾 ]

)

+ 𝐻 ({[a𝑖𝑘 ] 𝑗 }𝑖∈H, 𝑗∈T ,𝑘∈[𝐾 ] |{a 𝑗𝑘 } 𝑗∈[𝑁−𝑇 ],𝑘∈[𝐾 ])
+ 𝐻 ({a 𝑗𝑘 } 𝑗∈[𝑁−𝑇 ],𝑘∈[𝐾 ]) (88)

= 𝐻

({ 𝐾+𝑇∑︁
𝑘=𝐾+1

b𝑖𝑘
∏

𝑙∈[𝐾+𝑇 ]\{𝑘 }

𝛼 𝑗 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

}
𝑖∈H, 𝑗∈T

,

{ ∑︁
𝑗∈[𝑁−𝑇 ]

r 𝑗𝑘 − (M ⊗ I) b𝑘
}
𝑘∈{𝐾+1,...,𝐾+𝑇 }

)
+ 𝐻

(
{
∑︁
𝑙∈[𝑇 ]

𝛾𝑙𝑗e𝑖𝑘𝑙}𝑖∈H, 𝑗∈T ,𝑘∈[𝐾 ]

)
+ 𝐻 ({a 𝑗𝑘 } 𝑗∈[𝑁−𝑇 ],𝑘∈[𝐾 ]) (89)

where (88) follows from the chain rule of entropy, and (89)
holds since the random vectors are generated independently.
To simplify the analysis of (89), we let,[∑

𝑙∈[𝑇 ] 𝛾
𝑙
𝑁−𝑇 +1e𝑖𝑘𝑙 · · ·

∑
𝑙∈[𝑇 ] 𝛾

𝑙
𝑁

e𝑖𝑘𝑙
]

=
[
e𝑖𝑘1 · · · e𝑖𝑘𝑇

]
A (90)

where

A ,


𝛾1
𝑁−𝑇 +1 . . . 𝛾1

𝑁
...

. . .
...

𝛾T
𝑁−𝑇 +1 . . . 𝛾T

𝑁

 (91)

is an 𝑇 ×𝑇 MDS matrix (invertible). From (90), it follows for

the second term in (89) that,

𝐻

(
{
∑︁
𝑙∈[𝑇 ]

𝛾𝑙𝑗e𝑖𝑘𝑙}𝑖∈H, 𝑗∈T ,𝑘∈[𝐾 ]

)
=

∑︁
𝑖∈H

∑︁
𝑘∈[𝐾 ]

𝐻 ({
∑︁
𝑙∈[𝑇 ]

𝛾𝑙𝑗e𝑖𝑘𝑙} 𝑗∈T) (92)

=
∑︁

𝑖∈[𝑁−𝑇 ]

∑︁
𝑘∈[𝐾 ]

𝐻 ({
∑︁
𝑙∈[𝑇 ]

𝛾𝑙𝑗e𝑖𝑘𝑙} 𝑗∈{𝑁−𝑇 +1,...,𝑁 }) (93)

=
∑︁

𝑖∈[𝑁−𝑇 ]

∑︁
𝑘∈[𝐾 ]

𝐻

( [
e𝑖𝑘1 · · · e𝑖𝑘𝑇

]
A
)

(94)

=
∑︁

𝑖∈[𝑁−𝑇 ]

∑︁
𝑘∈[𝐾 ]

𝐻 (e𝑖𝑘1, . . . , e𝑖𝑘𝑇 ) (95)

= (𝑁 − 𝑇)𝐾𝑇 𝑑

(𝑁 − 𝑇)𝐾 log 𝑞 (96)

= 𝑇𝑑 log 𝑞 (97)

where (92) is from the independence of the generated random
variables, (94) follows from (90), and (95) holds since matrix
A is invertible, hence represents a bijective mapping. Finally,
(96) follows from the entropy of uniform random variables.
Similarly, for the last term in (89),

𝐻 ({a 𝑗𝑘 } 𝑗∈[𝑁−𝑇 ],𝑘∈[𝐾 ]) = (𝑁 −𝑇)𝐾
𝑑

(𝑁 − 𝑇)𝐾 log 𝑞 = 𝑑 log 𝑞
(98)

which also follows from the entropy of uniform random
variables.

For the first term in (89), we rewrite{ ∑𝐾+𝑇
𝑘=𝐾+1 b𝑖𝑘

∏
𝑙∈[𝐾+𝑇 ]\{𝑘 }

𝛼𝑗−𝛽𝑙
𝛽𝑘−𝛽𝑙

}
𝑗∈T

as:[ 𝐾+𝑇∑︁
𝑘=𝐾+1

b𝑖𝑘
∏

𝑙∈[𝐾+𝑇 ]\{𝑘 }

𝛼𝑁−𝑇 +1 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

· · ·
𝐾+𝑇∑︁
𝑘=𝐾+1

b𝑖𝑘
∏

𝑙∈[𝐾+𝑇 ]\{𝑘 }

𝛼𝑁 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

]
=

[
b𝑖,𝐾+1 · · · b𝑖,𝐾+𝑇

]
𝚪 (99)

where 𝚪 is the 𝑇 × 𝑇 MDS matrix from (66) (hence is
invertible). Using (99), one can then rewrite the first term in
(89) as:

𝐻

({ 𝐾+𝑇∑︁
𝑘=𝐾+1

b𝑖𝑘
∏

𝑙∈[𝐾+𝑇 ]\{𝑘 }

𝛼 𝑗 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

}
𝑖∈H, 𝑗∈T

,

{ ∑︁
𝑗∈[𝑁−𝑇 ]

r 𝑗𝑘 − (M ⊗ I) b𝑘
}
𝑘∈{𝐾+1,...,𝐾+𝑇 }

)
= 𝐻

({ [
b𝑖,𝐾+1 · · · b𝑖,𝐾+𝑇

]
𝚪

}
𝑖∈H

,

{ ∑︁
𝑗∈[𝑁−𝑇 ]

r 𝑗𝑘 − (M ⊗ I) b𝑘
}
𝑘∈{𝐾+1,...,𝐾+𝑇 }

)
(100)

= 𝐻

(
{b𝑖,𝐾+1, . . . , b𝑖,𝐾+𝑇 }𝑖∈H ,
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{ ∑︁
𝑗∈[𝑁−𝑇 ]

r 𝑗𝑘 − (M ⊗ I) b𝑘
}
𝑘∈{𝐾+1,...,𝐾+𝑇 }

)
(101)

= 𝐻

(
{b𝑖,𝑘 }𝑖∈H,𝑘∈{𝐾+1,...,𝐾+𝑇 },{ ∑︁
𝑗∈[𝑁−𝑇 ]

r 𝑗𝑘 − (M ⊗ I) b𝑘
}
𝑘∈{𝐾+1,...,𝐾+𝑇 }

)
(102)

= 𝐻

({ ∑︁
𝑗∈[𝑁−𝑇 ]

r 𝑗𝑘 − (M ⊗ I) b𝑘
}
𝑘∈{𝐾+1,...,𝐾+𝑇 }���{b𝑖,𝑘 }𝑖∈[𝑁−𝑇 ],𝑘∈{𝐾+1,...,𝐾+𝑇 })

+ 𝐻 ({b𝑖,𝑘 }𝑖∈[𝑁−𝑇 ],𝑘∈{𝐾+1,...,𝐾+𝑇 }) (103)

= 𝐻 ({
∑︁

𝑗∈[𝑁−𝑇 ]
r 𝑗𝑘 }𝑘∈{𝐾+1,...,𝐾+𝑇 }

|{b𝑖,𝑘 }𝑖∈[𝑁−𝑇 ],𝑘∈{𝐾+1,...,𝐾+𝑇 })
+ 𝐻 ({b𝑖,𝑘 }𝑖∈[𝑁−𝑇 ],𝑘∈{𝐾+1,...,𝐾+𝑇 }) (104)

= 𝐻 ({
∑︁

𝑗∈[𝑁−𝑇 ]
r 𝑗𝑘 }𝑘∈{𝐾+1,...,𝐾+𝑇 })

+ 𝐻 ({b𝑖,𝑘 }𝑖∈[𝑁−𝑇 ],𝑘∈{𝐾+1,...,𝐾+𝑇 }) (105)

= 𝑇
𝑑

𝐾
log 𝑞 + (𝑁 − 𝑇)𝑇 𝑑

(𝑁 − 𝑇)𝐾 log 𝑞 (106)

=
2𝑇𝑑
𝐾

log 𝑞 (107)

where (101) holds since 𝚪 is invertible, representing a bijective
mapping. Equation (103) follows from the chain rule of
entropy, (104) holds since given {b𝑖,𝑘 }𝑖∈[𝑁−𝑇 ],𝑘∈{𝐾+1,...,𝐾+𝑇 },
there is no uncertainty in (M ⊗ I) b𝑘 , (105) follows from the
independence of the random vectors, and (106) follows from
the entropy of uniform random variables. By combining (107),
(97), and (98), with (85), we can rewrite the second term in
(80) as follows,

𝐻 ({ã𝑖 𝑗 , [a𝑖𝑘 ] 𝑗 }𝑖∈H, 𝑗∈T ,𝑘∈[𝐾 ] , {
∑︁
𝑗∈[𝑁 ]

y 𝑗𝑘 − a𝑘 }𝑘∈[𝐾 ] ,

{
∑︁
𝑗∈[𝑁 ]

r 𝑗𝑘 − b𝑘 }𝑘∈{𝐾+1,...,𝐾+𝑇 },

{r𝑖𝑘 , b𝑖𝑘 , a𝑖𝑘′ , e𝑖𝑘′𝑙}𝑖∈T ,𝑘′∈[𝐾 ],𝑙∈[𝑇 ]
𝑘∈{𝐾+1,...,𝐾+𝑇 }

|M1
T , {X𝑖 , y𝑖}𝑖∈[𝑁 ] ,w

(𝐽 ) )

=
2𝑇𝑑
𝐾

log 𝑞 + 𝑇𝑑 log 𝑞 + 𝑑 log 𝑞

+ 𝑇𝑑
( 𝑇
𝐾
+ 𝑇

𝐾 (𝑁 − 𝑇) +
1

𝑁 − 𝑇 +
𝑇

𝑁 − 𝑇

)
log 𝑞 (108)

=

(
𝑑

(2𝑇
𝐾
+ 𝑇 + 1

)
+ 𝑇𝑑

( 𝑇
𝐾
+ 𝑇

𝐾 (𝑁 − 𝑇) +
1

𝑁 − 𝑇 +
𝑇

𝑁 − 𝑇

))
log 𝑞 (109)

Next, for the first term in (80), we observe that,

𝐻 ({ã𝑖 𝑗 , [a𝑖𝑘 ] 𝑗 }𝑖∈H, 𝑗∈T ,𝑘∈[𝐾 ] , {
∑︁
𝑗∈[𝑁 ]

y 𝑗𝑘 − a𝑘 }𝑘∈[𝐾 ] ,

{
∑︁
𝑗∈[𝑁 ]

r 𝑗𝑘 − b𝑘 }𝑘∈{𝐾+1,...,𝐾+𝑇 },

{r𝑖𝑘 , b𝑖𝑘 , a𝑖𝑘′ , e𝑖𝑘′𝑙}𝑖∈T ,𝑘′∈[𝐾 ],𝑙∈[𝑇 ]
𝑘∈{𝐾+1,...,𝐾+𝑇 }

|M1
T ,

{X𝑖 , y𝑖}𝑖∈T ,w
(𝐽 ) )

≤
( (𝑁 − 𝑇)𝑇𝑑
(𝑁 − 𝑇)𝐾 +

(𝑁 − 𝑇)𝑇𝑑𝐾
(𝑁 − 𝑇)𝐾 +

𝐾𝑑

𝐾
+ 𝑇𝑑
𝐾
+𝑇

2𝑑

𝐾
+ 𝑇2𝑑

𝐾 (𝑁 − 𝑇) +
𝑇𝑑

𝑁 − 𝑇 +
𝑇2𝑑

𝑁 − 𝑇

)
log 𝑞

(110)

=

(
𝑑

(2𝑇
𝐾
+ 𝑇 + 1

)
+ 𝑇𝑑

( 𝑇
𝐾
+ 𝑇

𝐾 (𝑁 − 𝑇) +
1

𝑁 − 𝑇 +
𝑇

𝑁 − 𝑇

))
log 𝑞 (111)

Finally, by combining (111) and (109) with (80), we find that,

0 ≤ 𝐼 ({X𝑖 , y𝑖}𝑖∈H ;M2
T |M

1
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 ) ) (112)

≤
(
𝑑

(2𝑇
𝐾
+ 𝑇 + 1

)
+ 𝑇𝑑

( 𝑇
𝐾
+ 𝑇

𝐾 (𝑁 − 𝑇) +
1

𝑁 − 𝑇 +
𝑇

𝑁 − 𝑇

))
log 𝑞

−
(
𝑑

(2𝑇
𝐾
+ 𝑇 + 1

)
+ 𝑇𝑑

( 𝑇
𝐾
+ 𝑇

𝐾 (𝑁 − 𝑇) +
1

𝑁 − 𝑇 +
𝑇

𝑁 − 𝑇

))
log 𝑞 (113)

= 0 (114)

where the inequality in (112) follows from the non-negativity
of mutual information. Hence,

𝐼 ({X𝑖 , y𝑖}𝑖∈H ;M2
T |M

1
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 ) ) = 0 (115)

for the second term in (49).
Stage 3: Model Initialization. We now consider the third
term in (49), which corresponds to Stage 3 of PICO, i.e.,
model initialization. Without loss of generality, we represent
the secret share [w(0)

𝑖
] 𝑗 sent from client 𝑖 ∈ [𝑁] to client

𝑗 ∈ [𝑁] as follows:

[w(0)
𝑖
] 𝑗 , w(0)

𝑖
+

∑︁
𝑘∈[𝑇 ]

𝛾𝑘𝑗 s
(0)
𝑖𝑘

(116)

where {s(0)
𝑖𝑘
}𝑘∈[𝑇 ] are 𝑇 random vectors of size 𝑑

𝑁−𝑇 , where
each element is generated independently and uniformly at
random from F𝑞 , and coefficients {𝛾 𝑗 } 𝑗∈[𝑁 ] are as defined
in (77). We can then rewrite the mutual information condition
for the third term in (49) as follows:

𝐼 ({X𝑖 , y𝑖}𝑖∈H ;M3
T |M

1
T ,M

2
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 ) )
= 𝐼 ({X𝑖 , y𝑖}𝑖∈H ; {[w(0)

𝑖
] 𝑗 }𝑖∈H, 𝑗∈T ,

{w(0)
𝑖
, s(0)
𝑖𝑘
}𝑖∈T ,𝑘∈[𝑇 ] |M1

T ,M
2
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 ) ) (117)

= 𝐼 ({X𝑖 , y𝑖}𝑖∈H ; {[w(0)
𝑖
] 𝑗 }𝑖∈H, 𝑗∈T |M1

T ,M
2
T ,

{X𝑖 , y𝑖}𝑖∈T ,w
(𝐽 ) )

+ 𝐼 ({X𝑖 , y𝑖}𝑖∈H ; {w(0)
𝑖
, s(0)
𝑖𝑘
}𝑖∈T ,𝑘∈[𝑇 ] |{[w(0)𝑖 ] 𝑗 }𝑖∈H, 𝑗∈T ,

M1
T ,M

2
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 ) ) (118)

= 𝐻 ({[w(0)
𝑖
] 𝑗 }𝑖∈H, 𝑗∈T |M1

T ,M
2
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 ) )
− 𝐻 ({[w(0)

𝑖
] 𝑗 }𝑖∈H, 𝑗∈T |M1

T ,M
2
T , {X𝑖 , y𝑖}𝑖∈[𝑁 ] ,w

(𝐽 ) )
+ 𝐻 ({w(0)

𝑖
, s(0)
𝑖𝑘
}𝑖∈T ,𝑘∈[𝑇 ] |{[w(0)𝑖 ] 𝑗 }𝑖∈H, 𝑗∈T ,M

1
T ,M

2
T ,
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{X𝑖 , y𝑖}𝑖∈T ,w
(𝐽 ) )

− 𝐻 ({w(0)
𝑖
, s(0)
𝑖𝑘
}𝑖∈T ,𝑘∈[𝑇 ] |{[w(0)𝑖 ] 𝑗 }𝑖∈H, 𝑗∈T ,M

1
T ,M

2
T ,

{X𝑖 , y𝑖}𝑖∈[𝑁 ] ,w
(𝐽 ) ) (119)

We next consider each term in (119) separately. For the first
term in (119), we have that,

𝐻 ({[w(0)
𝑖
] 𝑗 }𝑖∈H, 𝑗∈T |M1

T ,M
2
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 ) )

≤ (𝑁 − 𝑇)𝑇 𝑑

𝑁 − 𝑇 log 𝑞 = 𝑇𝑑 log 𝑞 (120)

which holds since uniform distribution maximizes entropy. For
the second term in (119), we let,[

[w(0)
𝑖
]𝑁−𝑇 +1 · · · [w(0)

𝑖
]𝑁

]
= w(0)

𝑖

[
1 1 · · · 1

]︸              ︷︷              ︸
1

+
[
s(0)
𝑖1 · · · s(0)

𝑖𝑇

]
︸                ︷︷                ︸

s(0)
𝑖

A (121)

= w(0)
𝑖

1 + s(0)
𝑖

A (122)

where A is a 𝑇 ×𝑇 MDS matrix as defined in (91), and 1 is a
1 × 𝑇 vector, where each element is equal to 1. Using (122),
the second term in (119) can be written as,

𝐻 ({[w(0)
𝑖
] 𝑗 }𝑖∈H, 𝑗∈T |M1

T ,M
2
T , {X𝑖 , y𝑖}𝑖∈[𝑁 ] ,w

(𝐽 ) )
≥ 𝐻 ({[w(0)

𝑖
] 𝑗 }𝑖∈H, 𝑗∈T |M1

T ,M
2
T , {X𝑖 , y𝑖}𝑖∈[𝑁 ] ,w

(𝐽 )
,

{w(0)
𝑖
}𝑖∈H) (123)

= 𝐻 ({w(0)
𝑖

1 + s(0)
𝑖

A}𝑖∈H |M1
T ,M

2
T , {X𝑖 , y𝑖}𝑖∈[𝑁 ] ,w

(𝐽 )
,

{w(0)
𝑖
}𝑖∈H) (124)

= 𝐻 ({s(0)
𝑖

A}𝑖∈H |M1
T ,M

2
T , {X𝑖 , y𝑖}𝑖∈[𝑁 ] ,w

(𝐽 )
, {w(0)

𝑖
}𝑖∈H)

(125)

= 𝐻 ({s(0)
𝑖
}𝑖∈H |M1

T ,M
2
T , {X𝑖 , y𝑖}𝑖∈[𝑁 ] ,w

(𝐽 )
, {w(0)

𝑖
}𝑖∈H)

(126)

= 𝐻

(
{s(0)
𝑖
}𝑖∈H

)
(127)

= (𝑁 − 𝑇)𝑇 𝑑

𝑁 − 𝑇 log 𝑞 (128)

= 𝑑𝑇 log 𝑞 (129)

where (123) holds since conditioning cannot increase entropy,
and matrix A in (124) is a 𝑇 × 𝑇 MDS matrix as defined in
(91). Equation (126) holds since A is an MDS matrix, hence
is invertible. Equation (127) follows from the independence of
the generated random vectors, and (128) is from the entropy
of uniform random variables. For the third term in (119), we
have,

𝐻 ({w(0)
𝑖
, s(0)
𝑖𝑘
}𝑖∈T ,𝑘∈[𝑇 ] |{[w(0)𝑖 ] 𝑗 }𝑖∈H, 𝑗∈T ,M

1
T ,M

2
T ,

{X𝑖 , y𝑖}𝑖∈T ,w
(𝐽 ) )

≤ 𝐻 ({w(0)
𝑖
, s(0)
𝑖𝑘
}𝑖∈T ,𝑘∈[𝑇 ]) (130)

≤
( 𝑇𝑑

𝑁 − 𝑇 +
𝑇2𝑑

𝑁 − 𝑇

)
log 𝑞 (131)

where (130) holds since conditioning cannot increase entropy,
and (131) follows from the entropy of uniform random vari-

ables. For the last term in (119), we find that,

𝐻 ({w(0)
𝑖
, s(0)
𝑖𝑘
}𝑖∈T ,𝑘∈[𝑇 ] |{[w(0)𝑖 ] 𝑗 }𝑖∈H, 𝑗∈T ,M

1
T ,M

2
T ,

{X𝑖 , y𝑖}𝑖∈[𝑁 ] ,w
(𝐽 ) )

≥ 𝐻 ({w(0)
𝑖
, s(0)
𝑖𝑘
}𝑖∈T ,𝑘∈[𝑇 ] |{[w(0)𝑖 ] 𝑗 }𝑖∈H, 𝑗∈T ,M

1
T ,M

2
T ,

{X𝑖 , y𝑖}𝑖∈[𝑁 ] ,w
(𝐽 )
,w(0) ) (132)

= 𝐻 ({w(0)
𝑖
, s(0)
𝑖𝑘
}𝑖∈T ,𝑘∈[𝑇 ] |{[w(0)𝑖 ] 𝑗 }𝑖∈H, 𝑗∈T ,w

(0) ) (133)

= 𝐻 ({w(0)
𝑖
, s(0)
𝑖𝑘
}𝑖∈T ,𝑘∈[𝑇 ]) (134)

=

( 𝑇𝑑

𝑁 − 𝑇 +
𝑇2𝑑

𝑁 − 𝑇

)
log 𝑞 (135)

where (132) is from the fact that conditioning cannot increase
entropy, and (133) holds since:

{w(0)
𝑖
, s(0)
𝑖𝑘
}𝑖∈T ,𝑘∈[𝑇 ] − w(0) , {[w(0)

𝑖
] 𝑗 }𝑖∈H, 𝑗∈T −M1

T ,M
2
T ,

{X𝑖 , y𝑖}𝑖∈[𝑁 ] ,w
(𝐽 ) (136)

forms a Markov chain, and (135) follows from the entropy of
uniform random variables. For (134), we first observe,

𝐼 ({w(0)
𝑖
, s(0)
𝑖𝑘
}𝑖∈T ,𝑘∈[𝑇 ] ; w(0) , {[w(0)

𝑖
] 𝑗 }𝑖∈H, 𝑗∈T)

= 𝐼 ({w(0)
𝑖
, s(0)
𝑖𝑘
}𝑖∈T ,𝑘∈[𝑇 ] ; w(0) )

+ 𝐼 ({w(0)
𝑖
, s(0)
𝑖𝑘
}𝑖∈T ,𝑘∈[𝑇 ] ; {[w(0)𝑖 ] 𝑗 }𝑖∈H, 𝑗∈T |w

(0) ). (137)

For the first term in (137), we find that,

0 ≤ 𝐼 ({w(0)
𝑖
, s(0)
𝑖𝑘
}𝑖∈T ,𝑘∈[𝑇 ] ; w(0) ) (138)

= 𝐻 (w(0) ) − 𝐻 (w(0) |{w(0)
𝑖
, s(0)
𝑖𝑘
}𝑖∈T ,𝑘∈[𝑇 ]) (139)

≤ 𝑑 log 𝑞 − 𝐻
(
(M ⊗ I)

[
(w(0)1 )

T · · · (w(0)
𝑁
)T

]T ���
{w(0)

𝑖
, s(0)
𝑖𝑘
}𝑖∈T ,𝑘∈[𝑇 ]

)
(140)

= 𝑑 log 𝑞 − 𝐻
(
(M ⊗ I)

[
(w(0)1 )

T · · · (w(0)
𝑁−𝑇 )

T
]T ���

{w(0)
𝑖
, s(0)
𝑖𝑘
}𝑖∈T ,𝑘∈[𝑇 ]

)
(141)

= 𝑑 log 𝑞 − 𝐻
(
(M ⊗ I)

[
(w(0)1 )

T · · · (w(0)
𝑁−𝑇 )

T
]T )

(142)

= 𝑑 log 𝑞 − 𝐻
(
w(0)1 , . . . ,w(0)

𝑁−𝑇

)
(143)

= 𝑑 log 𝑞 − (𝑁 − 𝑇) 𝑑

𝑁 − 𝑇 log 𝑞 (144)

= 0 (145)

where M and M are as defined in (16), and (86), respectively,
(138) is due to the non-negativity of mutual information, (140)
holds since entropy is maximized by uniform distribution,
(142) holds since the randomness generated by the honest
clients is independent from the randomness generated by
adversaries, (143) holds since M is an (𝑁 − 𝑇) × (𝑁 − 𝑇)
MDS matrix, hence is invertible, and (144) follows from the
entropy of uniformly random variables. From (145),

𝐼 ({w(0)
𝑖
, s(0)
𝑖𝑘
}𝑖∈T ,𝑘∈[𝑇 ] ; w(0) ) = 0 (146)

Next, for the second term in (137), we find that,

0 ≤ 𝐼 ({w(0)
𝑖
, s(0)
𝑖𝑘
}𝑖∈T ,𝑘∈[𝑇 ] ; {[w(0)𝑖 ] 𝑗 }𝑖∈H, 𝑗∈T |w

(0) ) (147)
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= 𝐻 ({[w(0)
𝑖
] 𝑗 }𝑖∈H, 𝑗∈T |w(0) )

− 𝐻 ({[w(0)
𝑖
] 𝑗 }𝑖∈H, 𝑗∈T |w(0) , {w(0)𝑖 , s(0)

𝑖𝑘
}𝑖∈T ,𝑘∈[𝑇 ]) (148)

where

𝐻 ({[w(0)
𝑖
] 𝑗 }𝑖∈H, 𝑗∈T |w(0) ) ≤

𝑑

𝑁 − 𝑇 (𝑁 − 𝑇)𝑇 log 𝑞 (149)

since uniform distribution maximizes entropy, and

𝐻 ({[w(0)
𝑖
] 𝑗 }𝑖∈H, 𝑗∈T |w(0) , {w(0)𝑖 , s(0)

𝑖𝑘
}𝑖∈T ,𝑘∈[𝑇 ])

= 𝐻

(
{w(0)

𝑖
1 + s(0)

𝑖
A}𝑖∈H | (M ⊗ I)

[
(w(0)1 )

T · · · (w(0)
𝑁
)T

]T
,

{w(0)
𝑖
, s(0)
𝑖𝑘
}𝑖∈T ,𝑘∈[𝑇 ]

)
(150)

= 𝐻

(
{w(0)

𝑖
1 + s(0)

𝑖
A}𝑖∈H |

(M ⊗ I)
[
(w(0)1 )

T · · · (w(0)
𝑁−𝑇 )

T
]T
, {w(0)

𝑖
, s(0)
𝑖𝑘
}𝑖∈T ,𝑘∈[𝑇 ]

)
(151)

= 𝐻

(
{w(0)

𝑖
1 + s(0)

𝑖
A}𝑖∈H |

[
(w(0)1 )

T · · · (w(0)
𝑁−𝑇 )

T
]T )

(152)

= 𝐻

(
{s(0)
𝑖

A}𝑖∈H |
[
(w(0)1 )

T · · · (w(0)
𝑁−𝑇 )

T
]T )

(153)

= 𝐻 ({s(0)
𝑖
}𝑖∈H) (154)

=
𝑑

𝑁 − 𝑇 (𝑁 − 𝑇)𝑇 log 𝑞 (155)

which holds since M and A are MDS matrices (invertible)
and that the random vectors are generated independently. By
combining (148) with (149) and (155), we find that,

𝐼 ({w(0)
𝑖
, s(0)
𝑖𝑘
}𝑖∈T ,𝑘∈[𝑇 ] ; {[w(0)𝑖 ] 𝑗 }𝑖∈H, 𝑗∈T |w

(0) ) = 0. (156)

Then, by combining (146) and (156) with (137), we have that,

𝐼 ({w(0)
𝑖
, s(0)
𝑖𝑘
}𝑖∈T ,𝑘∈[𝑇 ] ; w(0) , {[w(0)

𝑖
] 𝑗 }𝑖∈H, 𝑗∈T) = 0 (157)

from which (134) follows. Finally, by combining (120), (129),
(131), and (135) with (119), we find that,

0 ≤ 𝐼 ({X𝑖 , y𝑖}𝑖∈H ;M3
T |M

1
T ,M

2
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 ) ) (158)

= 𝐻 ({[w(0)
𝑖
] 𝑗 }𝑖∈H, 𝑗∈T |M1

T ,M
2
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 ) )
− 𝐻 ({[w(0)

𝑖
] 𝑗 }𝑖∈H, 𝑗∈T |M1

T ,M
2
T , {X𝑖 , y𝑖}𝑖∈[𝑁 ] ,w

(𝐽 ) )
+ 𝐻 ({w(0)

𝑖
, s(0)
𝑖𝑘
}𝑖∈T ,𝑘∈[𝑇 ] |{[w(0)𝑖 ] 𝑗 }𝑖∈H, 𝑗∈T ,M

1
T ,M

2
T ,

{X𝑖 , y𝑖}𝑖∈T ,w
(𝐽 ) ) − 𝐻 ({w(0)

𝑖
, s(0)
𝑖𝑘
}𝑖∈T ,𝑘∈[𝑇 ] |

{[w(0)
𝑖
] 𝑗 }𝑖∈H, 𝑗∈T ,M1

T ,M
2
T , {X𝑖 , y𝑖}𝑖∈[𝑁 ] ,w

(𝐽 ) ) (159)

≤ 𝑇𝑑 log 𝑞 − 𝑇𝑑 log 𝑞 +
( 𝑇𝑑

𝑁 − 𝑇 +
𝑇2𝑑

𝑁 − 𝑇

)
log 𝑞

−
( 𝑇𝑑

𝑁 − 𝑇 +
𝑇2𝑑

𝑁 − 𝑇

)
log 𝑞 (160)

= 0 (161)

Hence, the third term in (49) satisfies:

𝐼 ({X𝑖 , y𝑖}𝑖∈H ;M3
T |M

1
T ,M

2
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 ) ) = 0. (162)

Stage 4: Model Encoding. We next consider the fourth term
in (49), which corresponds to model encoding. We represent

the secret share of r(𝑡)
𝑖

at client 𝑗 ∈ [𝑁] as,

[r(𝑡)
𝑖
] 𝑗 = r(𝑡)

𝑖
+

∑︁
𝑘∈[𝑇 ]

𝛾𝑘𝑗 g
(𝑡)
𝑖𝑘

(163)

for 𝑖 ∈ [𝑁], where g(𝑡)
𝑖𝑘

is a random vector of size 𝑑
𝑁−𝑇

where each element is generated independently and uniformly
at random from F𝑞 , and the coefficients 𝛾𝑖 for 𝑖 ∈ [𝑁] are as
defined in (77). Then, for the third term in (49), we observe
that:

𝐼 ({X𝑖 , y𝑖}𝑖∈H ;M4,𝑡
T |M

1
T ,M

2
T ,M

3
T ,∪

𝑡−1
𝑙=0M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T ,

{X𝑖 , y𝑖}𝑖∈T ,w
(𝐽 ) )

= 𝐼 ({X𝑖 , y𝑖}𝑖∈H ; {[r(𝑡)
𝑖
] 𝑗 , r̃(𝑡)𝑖 𝑗 }𝑖∈H

𝑗∈T
, {r(𝑡)

𝑖
}𝑖∈T , {g(𝑡)𝑖𝑘 } 𝑖∈T

𝑘∈[𝑇 ]
,

{v(𝑡)
𝑖𝑘
} 𝑖∈T
𝑘∈{𝐾+1,...,𝐾+𝑇 }

, {[ŵ(𝑡) ]𝑖}𝑖∈[𝑁 ] |M1
T ,M

2
T ,M

3
T ,

∪𝑡−1
𝑙=0 M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 ) ) (164)

= 𝐻 ({[r(𝑡)
𝑖
] 𝑗 , r̃(𝑡)𝑖 𝑗 }𝑖∈H

𝑗∈T
, {r(𝑡)

𝑖
}𝑖∈T , {g(𝑡)𝑖𝑘 } 𝑖∈T

𝑘∈[𝑇 ]
,

{v(𝑡)
𝑖𝑘
} 𝑖∈T
𝑘∈{𝐾+1,...,𝐾+𝑇 }

, {[ŵ(𝑡) ]𝑖}𝑖∈[𝑁 ] |M1
T ,M

2
T ,M

3
T ,

∪𝑡−1
𝑙=0 M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 ) )
− 𝐻 ({[r(𝑡)

𝑖
] 𝑗 , r̃(𝑡)𝑖 𝑗 }𝑖∈H

𝑗∈T
, {r(𝑡)

𝑖
}𝑖∈T , {g(𝑡)𝑖𝑘 } 𝑖∈T

𝑘∈[𝑇 ]
,

{v(𝑡)
𝑖𝑘
} 𝑖∈T
𝑘∈{𝐾+1,...,𝐾+𝑇 }

, {[ŵ(𝑡) ]𝑖}𝑖∈[𝑁 ] |M1
T ,M

2
T ,M

3
T ,

∪𝑡−1
𝑙=0 M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T , {X𝑖 , y𝑖}𝑖∈[𝑁 ] ,w

(𝐽 ) ) (165)

Without loss of generality, we denote the secret share of the
model w(𝑡) held at client 𝑖 ∈ [𝑁] at time 𝑡 as follows:

[w(𝑡) ]𝑖 = w(𝑡) +
∑︁
𝑘∈[𝑇 ]

𝛾𝑘𝑖 s(𝑡)
𝑘

for all 𝑖 ∈ [𝑁], (166)

where s(𝑡)
𝑘
∈ F𝑑𝑞 , and coefficients 𝛾𝑖 for 𝑖 ∈ [𝑁] are as defined

in (77). From (25), we find that:

[ŵ(𝑡) ]𝑖 = [w(𝑡) ]𝑖 − [r(𝑡) ]𝑖 (167)

= [w(𝑡) ]𝑖 − (M ⊗ I)
[
( [r(𝑡)1 ]𝑖)

T · · · ( [r(𝑡)
𝑁
]𝑖)T

]T

(168)

=

(
w(𝑡) − (M ⊗ I)

[
(r(𝑡)1 )

T · · · (r(𝑡)
𝑁
)T

]T
)

+
∑︁
𝑘∈[𝑇 ]

𝛾𝑘𝑖

(
s(𝑡)
𝑘
− (M ⊗ I)

[
(g(𝑡)1𝑘 )

T · · · (g(𝑡)
𝑁 𝑘
)T

]T
)

(169)

is an evaluation point of a polynomial of degree 𝑇 . Since
any polynomial of degree 𝑇 can be uniquely determined from
at least 𝑇 + 1 evaluation points, there is a bijective mapping
between the set of 𝑇 + 1 coefficients,{

w(𝑡) − (M ⊗ I)
[
(r(𝑡)1 )

T · · · (r(𝑡)
𝑁
)T

]T
, s(𝑡)1

− (M ⊗ I)
[
(g(𝑡)11 )

T · · · (g(𝑡)
𝑁 1)

T
]T
,

. . . , s(𝑡)
𝑇
− (M ⊗ I)

[
(g(𝑡)1𝑇 )

T · · · (g(𝑡)
𝑁𝑇
)T

]T }
,

and the feasible set of evaluation points {[ŵ(𝑡) ]𝑖}𝑖∈[𝑁 ] . Then,
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the second term in (165) can be rewritten as follows:

𝐻 ({[r(𝑡)
𝑖
] 𝑗 , r̃(𝑡)𝑖 𝑗 }𝑖∈H

𝑗∈T
, {r(𝑡)

𝑖
}𝑖∈T , {g(𝑡)𝑖𝑘 } 𝑖∈T

𝑘∈[𝑇 ]
,

{v(𝑡)
𝑖𝑘
} 𝑖∈T
𝑘∈{𝐾+1,...,𝐾+𝑇 }

, {[ŵ(𝑡) ]𝑖}𝑖∈[𝑁 ] |M1
T ,M

2
T ,M

3
T ,

∪𝑡−1
𝑙=0 M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T , {X𝑖 , y𝑖}𝑖∈[𝑁 ] ,w

(𝐽 ) )

= 𝐻

(
{[r(𝑡)

𝑖
] 𝑗 , r̃(𝑡)𝑖 𝑗 }𝑖∈H

𝑗∈T
, {r(𝑡)

𝑖
}𝑖∈T , {g(𝑡)𝑖𝑘 } 𝑖∈T

𝑘∈[𝑇 ]
,

{v(𝑡)
𝑖𝑘
} 𝑖∈T
𝑘∈{𝐾+1,...,𝐾+𝑇 }

,w(𝑡) − (M ⊗ I)
[
(r(𝑡)1 )

T · · · (r(𝑡)
𝑁
)T

]T
,{

s(𝑡)
𝑘
− (M ⊗ I)

[
(g(𝑡)1𝑘 )

T · · · (g(𝑡)
𝑁 𝑘
)T

]T }
𝑘∈[𝑇 ]���M1

T ,M
2
T ,M

3
T ,∪

𝑡−1
𝑙=0M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T , {X𝑖 , y𝑖}𝑖∈[𝑁 ] ,w

(𝐽 )
)
(170)

= 𝐻

(
{[r(𝑡)

𝑖
] 𝑗 , r̃(𝑡)𝑖 𝑗 }𝑖∈H

𝑗∈T
, {r(𝑡)

𝑖
}𝑖∈T , {g(𝑡)𝑖𝑘 } 𝑖∈T

𝑘∈[𝑇 ]
,

{v(𝑡)
𝑖𝑘
} 𝑖∈T
𝑘∈{𝐾+1,...,𝐾+𝑇 }

, (M ⊗ I)
[
(r(𝑡)1 )

T · · · (r(𝑡)
𝑁−𝑇 )

T
]T
,{

s(𝑡)
𝑘
− (M ⊗ I)

[
(g(𝑡)1𝑘 )

T · · · (g(𝑡)(𝑁−𝑇 )𝑘 )
T
]T }

𝑘∈[𝑇 ]���M1
T ,M

2
T ,M

3
T ,∪

𝑡−1
𝑙=0M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T , {X𝑖 , y𝑖}𝑖∈[𝑁 ] ,w

(𝐽 )
)
(171)

= 𝐻

(
{r(𝑡)
𝑖
}𝑖∈T , {g(𝑡)𝑖𝑘 } 𝑖∈T

𝑘∈[𝑇 ]
, {v(𝑡)

𝑖𝑘
} 𝑖∈T
𝑘∈{𝐾+1,...,𝐾+𝑇 }

)
+ 𝐻

(
{[r(𝑡)

𝑖
] 𝑗 , r̃(𝑡)𝑖 𝑗 }𝑖∈H

𝑗∈T
, (M ⊗ I)

[
(r(𝑡)1 )

T · · · (r(𝑡)
𝑁−𝑇 )

T
]T
,{

s(𝑡)
𝑘
− (M ⊗ I)

[
(g(𝑡)1𝑘 )

T · · · (g(𝑡)(𝑁−𝑇 )𝑘 )
T
]T }

𝑘∈[𝑇 ]���M1
T ,M

2
T ,M

3
T ,∪

𝑡−1
𝑙=0M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T , {X𝑖 , y𝑖}𝑖∈[𝑁 ] ,w

(𝐽 )
)
(172)

=

(
𝑇𝑑

𝑁 − 𝑇 +
𝑇2𝑑

𝑁 − 𝑇 +
𝑇2𝑑

𝑁 − 𝑇

)
log 𝑞 + 𝐻

(
{[r(𝑡)

𝑖
] 𝑗 , r̃(𝑡)𝑖 𝑗 }𝑖∈H

𝑗∈T
,

(M ⊗ I)
[
(r(𝑡)1 )

T · · · (r(𝑡)
𝑁−𝑇 )

T
]T
,{

s(𝑡)
𝑘
− (M ⊗ I)

[
(g(𝑡)1𝑘 )

T · · · (g(𝑡)(𝑁−𝑇 )𝑘 )
T
]T }

𝑘∈[𝑇 ]���M1
T ,M

2
T ,M

3
T ,∪

𝑡−1
𝑙=0M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T , {X𝑖 , y𝑖}𝑖∈[𝑁 ] ,w

(𝐽 )
)
(173)

≥ 𝑇𝑑

𝑁 − 𝑇 (1 + 2𝑇) log 𝑞 + 𝐻
(
{[r(𝑡)

𝑖
] 𝑗 , r̃(𝑡)𝑖 𝑗 }𝑖∈H

𝑗∈T
,

(M ⊗ I)
[
(r(𝑡)1 )

T · · · (r(𝑡)
𝑁−𝑇 )

T
]T
,{

s(𝑡)
𝑘
− (M ⊗ I)

[
(g(𝑡)1𝑘 )

T · · · (g(𝑡)(𝑁−𝑇 )𝑘 )
T
]T }

𝑘∈[𝑇 ]

�����
M1
T ,M

2
T ,M

3
T ,∪

𝑡−1
𝑙=0M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T ,

{X𝑖 , y𝑖}𝑖∈[𝑁 ] ,w
(𝐽 )
, {s(𝑡)

𝑘
}𝑘∈[𝑇 ]

)
(174)

=
𝑇𝑑

𝑁 − 𝑇 (1 + 2𝑇) log 𝑞 + 𝐻
(
{[r(𝑡)

𝑖
] 𝑗 , r̃(𝑡)𝑖 𝑗 }𝑖∈H

𝑗∈T
,

(M ⊗ I)
[
(r(𝑡)1 )

T · · · (r(𝑡)
𝑁−𝑇 )

T
]T
,{

(M ⊗ I)
[
(g(𝑡)1𝑘 )

T · · · (g(𝑡)(𝑁−𝑇 )𝑘 )
T
]T }

𝑘∈[𝑇 ]

���
M1
T ,M

2
T ,M

3
T ,∪

𝑡−1
𝑙=0M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T ,

{X𝑖 , y𝑖}𝑖∈[𝑁 ] ,w
(𝐽 )
, {s(𝑡)

𝑘
}𝑘∈[𝑇 ]

)
(175)

=
𝑇𝑑

𝑁 − 𝑇 (1 + 2𝑇) log 𝑞 + 𝐻
(
{[r(𝑡)

𝑖
] 𝑗 , r̃(𝑡)𝑖 𝑗 }𝑖∈H,

𝑗∈T
,

(M ⊗ I)
[
(r(𝑡)1 )

T · · · (r(𝑡)
𝑁−𝑇 )

T
]T
,{

(M ⊗ I)
[
(g(𝑡)1𝑘 )

T · · · (g(𝑡)(𝑁−𝑇 )𝑘 )
T
]T }

𝑘∈[𝑇 ]

)
(176)

=
𝑇𝑑

𝑁 − 𝑇 (1 + 2𝑇) log 𝑞 + 𝐻
(
{[r(𝑡)

𝑖
] 𝑗 , r̃(𝑡)𝑖 𝑗 }𝑖∈H

𝑗∈T
,[

(r(𝑡)1 )
T · · · (r(𝑡)

𝑁−𝑇 )
T
]T
,{ [

(g(𝑡)1𝑘 )
T · · · (g(𝑡)(𝑁−𝑇 )𝑘 )

T
]T }

𝑘∈[𝑇 ]

)
(177)

=
𝑇𝑑

𝑁 − 𝑇 (1 + 2𝑇) log 𝑞

+ 𝐻
(
{[r(𝑡)

𝑖
] 𝑗 , r̃(𝑡)𝑖 𝑗 }𝑖∈H

𝑗∈T
, {r(𝑡)

𝑖
}𝑖∈[𝑁−𝑇 ] , {g(𝑡)𝑖𝑘 }𝑖∈[𝑁−𝑇 ],𝑘∈[𝑇 ]

)
(178)

where (171) follows from H = [𝑁 − 𝑇], and that w(𝑡) can
be determined from {X𝑖 , y𝑖}𝑖∈[𝑁 ] and w(𝐽 ) ; (172) follows
from the independence of random vectors generated by honest
clients; (173) follows from the entropy of uniform random
variables; (174) holds since conditioning cannot increase
entropy; (176) holds from the independence of generated
random vectors, and (177) follows from the fact that M is
an (𝑁 − 𝑇) × (𝑁 − 𝑇) MDS matrix (hence is invertible) as
defined in (86). Using (121), we next rewrite {[r(𝑡)

𝑖
] 𝑗 } 𝑗∈[T]

as follows,[
[r(𝑡)
𝑖
]𝑁−𝑇 +1 · · · [r(𝑡)

𝑖
]𝑁

]
= r(𝑡)

𝑖

[
1 1 · · · 1

]︸              ︷︷              ︸
1

+
[
g(𝑡)
𝑖1 · · · g(𝑡)

𝑖𝑇

]
A (179)

= r(𝑡)
𝑖

1 +
[
g(𝑡)
𝑖1 · · · g(𝑡)

𝑖𝑇

]
A (180)

where A is the 𝑇 × 𝑇 MDS matrix defined in (91). Similarly,
using (99), we can rewrite {̃r(𝑡)

𝑖 𝑗
} 𝑗∈T as follows,[̃

r(𝑡)
𝑖,𝑁−𝑇 +1 · · · r̃(𝑡)

𝑖,𝑁

]
= r(𝑡)

𝑖

[∑
𝑘∈[𝐾 ] 𝜌𝑁−𝑇 +1,𝑘 · · · ∑

𝑘∈[𝐾 ] 𝜌𝑁 ,𝑘
]
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+
[
v(𝑡)
𝑖,𝐾+1 · · · v(𝑡)

𝑖,𝐾+𝑇

]
𝚪 (181)

where 𝚪 is a 𝑇 × 𝑇 MDS matrix (hence invertible) as defined
in (66). By using (180) and (181), we rewrite the second term
in (178) as follows,

𝐻

(
{[r(𝑡)

𝑖
] 𝑗 , r̃(𝑡)𝑖 𝑗 }𝑖∈H

𝑗∈T
, {r(𝑡)

𝑖
}𝑖∈[𝑁−𝑇 ] , {g(𝑡)𝑖𝑘 }𝑖∈[𝑁−𝑇 ],𝑘∈[𝑇 ]

)
= 𝐻

(
{r(𝑡)
𝑖

1 +
[
g(𝑡)
𝑖1 · · · g(𝑡)

𝑖𝑇

]
A}𝑖∈[𝑁−𝑇 ] ,{

r(𝑡)
𝑖

[∑
𝑘∈[𝐾 ] 𝜌𝑁−𝑇 +1,𝑘 · · · ∑

𝑘∈[𝐾 ] 𝜌𝑁 ,𝑘
]

+
[
v(𝑡)
𝑖,𝐾+1 · · · v(𝑡)

𝑖,𝐾+𝑇

]
𝚪

}
𝑖∈[𝑁−𝑇 ]

,

{r(𝑡)
𝑖
}𝑖∈[𝑁−𝑇 ] , {g(𝑡)𝑖𝑘 }𝑖∈[𝑁−𝑇 ],𝑘∈[𝑇 ]

)
(182)

= 𝐻

(
{r(𝑡)
𝑖

1 +
[
g(𝑡)
𝑖1 · · · g(𝑡)

𝑖𝑇

]
A}𝑖∈[𝑁−𝑇 ] ,{

r(𝑡)
𝑖

[∑
𝑘∈[𝐾 ] 𝜌𝑁−𝑇 +1,𝑘 · · · ∑

𝑘∈[𝐾 ] 𝜌𝑁 ,𝑘
]

+
[
v(𝑡)
𝑖,𝐾+1 · · · v(𝑡)

𝑖,𝐾+𝑇

]
𝚪

}
𝑖∈[𝑁−𝑇 ]

,

{g(𝑡)
𝑖𝑘
}𝑖∈[𝑁−𝑇 ],𝑘∈[𝑇 ]

���{r(𝑡)𝑖 }𝑖∈[𝑁−𝑇 ]) + 𝐻 ({r(𝑡)𝑖 }𝑖∈[𝑁−𝑇 ])
(183)

= 𝐻

(
{
[
g(𝑡)
𝑖1 · · · g(𝑡)

𝑖𝑇

]
A}𝑖∈[𝑁−𝑇 ] ,{ [

v(𝑡)
𝑖,𝐾+1 · · · v(𝑡)

𝑖,𝐾+𝑇

]
𝚪
}
𝑖∈[𝑁−𝑇 ] ,

{g(𝑡)
𝑖𝑘
}𝑖∈[𝑁−𝑇 ],𝑘∈[𝑇 ]

���{r(𝑡)𝑖 }𝑖∈[𝑁−𝑇 ] ) + 𝐻 ({r(𝑡)𝑖 }𝑖∈[𝑁−𝑇 ])
(184)

= 𝐻 (
{ [

v(𝑡)
𝑖,𝐾+1 · · · v(𝑡)

𝑖,𝐾+𝑇

]
𝚪
}
𝑖∈[𝑁−𝑇 ])

+ 𝐻 ({g(𝑡)
𝑖𝑘
}𝑖∈[𝑁−𝑇 ],𝑘∈[𝑇 ]) + 𝐻 ({r(𝑡)𝑖 }𝑖∈[𝑁−𝑇 ]) (185)

= 𝐻 (
{ [

v(𝑡)
𝑖,𝐾+1 · · · v(𝑡)

𝑖,𝐾+𝑇

] }
𝑖∈[𝑁−𝑇 ])

+ 𝐻 ({g(𝑡)
𝑖𝑘
}𝑖∈[𝑁−𝑇 ],𝑘∈[𝑇 ]) + 𝐻 ({r(𝑡)𝑖 }𝑖∈[𝑁−𝑇 ]) (186)

= (𝑁 − 𝑇)𝑇 𝑑

𝑁 − 𝑇 log 𝑞 + (𝑁 − 𝑇)𝑇 𝑑

𝑁 − 𝑇 log 𝑞

+ (𝑁 − 𝑇) 𝑑

𝑁 − 𝑇 log 𝑞 (187)

= 𝑑 (1 + 2𝑇) log 𝑞 (188)

where (183) follows from the chain rule of entropy; (185)
follows from the independence of generated random vectors;
(186) holds since 𝚪 is an MDS matrix (hence invertible); (187)
follows from the entropy of uniform random variables.

By combining (178) with (188), the following holds for the
second term in (165),

𝐻 ({[r(𝑡)
𝑖
] 𝑗 , r̃(𝑡)𝑖 𝑗 }𝑖∈H

𝑗∈T
, {r(𝑡)

𝑖
}𝑖∈T , {g(𝑡)𝑖𝑘 } 𝑖∈T

𝑘∈[𝑇 ]
,

{v(𝑡)
𝑖𝑘
} 𝑖∈T
𝑘∈{𝐾+1,...,𝐾+𝑇 }

, {[ŵ(𝑡) ]𝑖}𝑖∈[𝑁 ] |M1
T ,M

2
T ,M

3
T ,

∪𝑡−1
𝑙=0 M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T , {X𝑖 , y𝑖}𝑖∈[𝑁 ] ,w

(𝐽 ) )

≥ 𝑑 (2𝑇 + 1)
(

𝑇

𝑁 − 𝑇 + 1
)

log 𝑞 (189)

We next analyze the first term in (165). By utilizing (169),
(180), and (181), we find that:

𝐻 ({[r(𝑡)
𝑖
] 𝑗 , r̃(𝑡)𝑖 𝑗 }𝑖∈H

𝑗∈T
, {r(𝑡)

𝑖
}𝑖∈T , {g(𝑡)𝑖𝑘 } 𝑖∈T

𝑘∈[𝑇 ]
,

{v(𝑡)
𝑖𝑘
} 𝑖∈T
𝑘∈{𝐾+1,...,𝐾+𝑇 }

, {[ŵ(𝑡) ]𝑖}𝑖∈[𝑁 ] |M1
T ,M

2
T ,M

3
T ,

∪𝑡−1
𝑙=0 M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 ) )

= 𝐻

( {
r(𝑡)
𝑖

1 +
[
g(𝑡)
𝑖1 · · · g(𝑡)

𝑖𝑇

]
A
}
𝑖∈H

,{
r(𝑡)
𝑖

[∑
𝑘∈[𝐾 ] 𝜌𝑁−𝑇 +1,𝑘 · · · ∑

𝑘∈[𝐾 ] 𝜌𝑁 ,𝑘
]

+
[
v(𝑡)
𝑖,𝐾+1 · · · v(𝑡)

𝑖,𝐾+𝑇

]
𝚪
}
𝑖∈H

, {r(𝑡)
𝑖
}𝑖∈T , {g(𝑡)𝑖𝑘 } 𝑖∈T

𝑘∈[𝑇 ]
,

{v(𝑡)
𝑖𝑘
} 𝑖∈T
𝑘∈{𝐾+1,...,𝐾+𝑇 }

,w(𝑡)−(M ⊗ I)
[
(r(𝑡)1 )

T · · · (r(𝑡)
𝑁
)T

]T
,{

s(𝑡)
𝑘
− (M ⊗ I)

[
(g(𝑡)1𝑘 )

T · · · (g(𝑡)
𝑁 𝑘
)T

]T
}
𝑘∈[𝑇 ]���M1

T ,M
2
T ,M

3
T ,∪

𝑡−1
𝑙=0M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 ) )
)
(190)

= 𝐻

( {
r(𝑡)
𝑖

1 +
[
g(𝑡)
𝑖1 · · · g(𝑡)

𝑖𝑇

]
A
}
𝑖∈H

,{
r(𝑡)
𝑖

[∑
𝑘∈[𝐾 ] 𝜌𝑁−𝑇 +1,𝑘 · · · ∑

𝑘∈[𝐾 ] 𝜌𝑁 ,𝑘
]

+
[
v(𝑡)
𝑖,𝐾+1 · · · v(𝑡)

𝑖,𝐾+𝑇

]
𝚪
}
𝑖∈H

, {r(𝑡)
𝑖
}𝑖∈T ,

{g(𝑡)
𝑖𝑘
} 𝑖∈T
𝑘∈[𝑇 ]

, {v(𝑡)
𝑖𝑘
} 𝑖∈T
𝑘∈{𝐾+1,...,𝐾+𝑇 }

,

w(𝑡) − (M ⊗ I)
[
(r(𝑡)1 )

T · · · (r(𝑡)(𝑁−𝑇 ) )
T
]T
,{

s(𝑡)
𝑘
− (M ⊗ I)

[
(g(𝑡)1𝑘 )

T · · · (g(𝑡)(𝑁−𝑇 )𝑘 )
T
]T }

𝑘∈[𝑇 ]���M1
T ,M

2
T ,M

3
T ,∪

𝑡−1
𝑙=0M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 ) )
)
(191)

Note that at the beginning of this stage, adversaries hold
secret shares {[w(𝑡) ] 𝑗 } 𝑗∈T of the model w(𝑡) . Accordingly,
{[w(𝑡) ] 𝑗 } 𝑗∈T ∈ M1

T ,M
2
T ,M

3
T ,∪

𝑡−1
𝑙=0M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T . Then,

by letting,[
[w(𝑡) ]𝑁−𝑇 +1 · · · [w(𝑡) ]𝑁

]
= w(𝑡)1 +

[
s(𝑡)1 · · · s(𝑡)

𝑇

]
A

(192)
denote the secret shares of the model w(𝑡) held by the
adversaries T = {𝑁 − 𝑇 + 1. . . . , 𝑁}, one can observe that,(

s(𝑡)1 −(M ⊗ I)
[
(g(𝑡)11 )

T · · · (g(𝑡)(𝑁−𝑇 )1)
T
]T
, . . . , s(𝑡)

𝑇

− (M ⊗ I)
[
(g(𝑡)1𝑇 )

T · · · (g(𝑡)(𝑁−𝑇 )𝑇 )
T
]T

)
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=

[
s(𝑡)1 · · · s(𝑡)

𝑇

]
− (M ⊗ I)


g(𝑡)11 · · · g(𝑡)1𝑇
...

. . .
...

g(𝑡)(𝑁−𝑇 )1 · · · g(𝑡)(𝑁−𝑇 )𝑇


(193)

=

(
w(𝑡)1 +

[
s(𝑡)1 · · · s(𝑡)

𝑇

]
A

−
(
w(𝑡) − (M ⊗ I)

[
(r(𝑡)1 )

T · · · (r(𝑡)(𝑁−𝑇 ) )
T
]T

)
1

− (M ⊗ I)
[(

r(𝑡)1 1 +
[
g(𝑡)11 · · · g(𝑡)1𝑇

]
A
)T
· · ·(

r(𝑡)(𝑁−𝑇 )1 +
[
g(𝑡)(𝑁−𝑇 )1 · · · g(𝑡)(𝑁−𝑇 )𝑇

]
A
)T

]T
)
A−1 (194)

From (194), we then observe the following for (191):

𝐻

( {
r(𝑡)
𝑖

1 +
[
g(𝑡)
𝑖1 · · · g(𝑡)

𝑖𝑇

]
A
}
𝑖∈H

,{
r(𝑡)
𝑖

[∑
𝑘∈[𝐾 ] 𝜌𝑁−𝑇 +1,𝑘 · · · ∑

𝑘∈[𝐾 ] 𝜌𝑁 ,𝑘
]

+
[
v(𝑡)
𝑖,𝐾+1 · · · v(𝑡)

𝑖,𝐾+𝑇

]
𝚪
}
𝑖∈H

, {r(𝑡)
𝑖
}𝑖∈T ,

{g(𝑡)
𝑖𝑘
} 𝑖∈T
𝑘∈[𝑇 ]

, {v(𝑡)
𝑖𝑘
} 𝑖∈T
𝑘∈{𝐾+1,...,𝐾+𝑇 }

,

w(𝑡)−(M ⊗ I)
[
(r(𝑡)1 )

T · · · (r(𝑡)(𝑁−𝑇 ) )
T
]T
,{

s(𝑡)
𝑘
−(M ⊗ I)

[
(g(𝑡)1𝑘 )

T · · · (g(𝑡)(𝑁−𝑇 )𝑘 )
T
]T }

𝑘∈[𝑇 ]���M1
T ,M

2
T ,M

3
T ,∪

𝑡−1
𝑙=0M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 )
)

= 𝐻

( {
r(𝑡)
𝑖

1 +
[
g(𝑡)
𝑖1 · · · g(𝑡)

𝑖𝑇

]
A
}
𝑖∈H

,{
r(𝑡)
𝑖

[∑
𝑘∈[𝐾 ] 𝜌𝑁−𝑇 +1,𝑘 · · · ∑

𝑘∈[𝐾 ] 𝜌𝑁 ,𝑘
]

+
[
v(𝑡)
𝑖,𝐾+1 · · · v(𝑡)

𝑖,𝐾+𝑇

]
𝚪
}
𝑖∈H

, {r(𝑡)
𝑖
}𝑖∈T ,

{g(𝑡)
𝑖𝑘
} 𝑖∈T
𝑘∈[𝑇 ]

, {v(𝑡)
𝑖𝑘
} 𝑖∈T
𝑘∈{𝐾+1,...,𝐾+𝑇 }

,

w(𝑡) − (M ⊗ I)
[
(r(𝑡)1 )

T · · · (r(𝑡)(𝑁−𝑇 ) )
T
]T

|M1
T ,M

2
T ,M

3
T ,∪

𝑡−1
𝑙=0M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 )
)

(195)

≤ 𝐻
({

r(𝑡)
𝑖

1 +
[
g(𝑡)
𝑖1 · · · g(𝑡)

𝑖𝑇

]T
A
}
𝑖∈H

,{
r(𝑡)
𝑖

[∑
𝑘∈[𝐾 ] 𝜌𝑁−𝑇 +1,𝑘 · · · ∑

𝑘∈[𝐾 ] 𝜌𝑁 ,𝑘
]

+
[
v(𝑡)
𝑖,𝐾+1 · · · v(𝑡)

𝑖,𝐾+𝑇

]
𝚪
}
𝑖∈H

, {r(𝑡)
𝑖
}𝑖∈T ,

{g(𝑡)
𝑖𝑘
} 𝑖∈T
𝑘∈[𝑇 ]

, {v(𝑡)
𝑖𝑘
} 𝑖∈T
𝑘∈{𝐾+1,...,𝐾+𝑇 }

,

w(𝑡) − (M ⊗ I)
[
(r(𝑡)1 )

T · · · (r(𝑡)(𝑁−𝑇 ) )
T
]T

)
(196)

≤
(
(𝑁 − 𝑇)𝑇 𝑑

𝑁 − 𝑇 + (𝑁 − 𝑇)𝑇
𝑑

𝑁 − 𝑇

+ 𝑇 𝑑

𝑁 − 𝑇 + 𝑇
2 𝑑

𝑁 − 𝑇 + 𝑇
2 𝑑

𝑁 − 𝑇 + 𝑑
)

log 𝑞 (197)

= 𝑑 (2𝑇 + 1)
(

𝑇

𝑁 − 𝑇 + 1
)

log 𝑞 (198)

where (195) follows from (194), (196) holds since condition-
ing cannot increase entropy, and (197) holds since entropy
is maximized by uniform distribution. Finally, by combining
(189) and (198) with (165), we find that:

0 ≤ 𝐼 ({X𝑖 , y𝑖}𝑖∈H ;M4,𝑡
T |M

1
T ,M

2
T ,M

3
T ,

∪𝑡−1
𝑙=0 M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 ) )

≤ 𝑑 (2𝑇 + 1)
(

𝑇

𝑁 − 𝑇 + 1
)

log 𝑞

− 𝑑 (2𝑇 + 1)
(

𝑇

𝑁 − 𝑇 + 1
)

log 𝑞 (199)

= 0 (200)

Therefore, the fourth term in (49) satisfies the following:

𝐼 ({X𝑖 , y𝑖}𝑖∈H ;M4,𝑡
T |M

1
T ,M

2
T ,M

3
T ,

∪𝑡−1
𝑙=0 M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 ) ) = 0 (201)

for all 𝑡 ∈ {0, . . . , 𝐽 − 1}.
Stage 5: Gradient Computing and Model Update. We next
consider the fifth term in (49), which corresponds to Stage 5
of the proposed framework, i.e., local gradient computation
and model updates. In the following, we define 𝐶 , (2𝑟 +
1) (𝐾 + 𝑇 − 1) + 1. Then, the last term in (49) can be written
as:

𝐼 ({X𝑖 , y𝑖}𝑖∈H ;M5,𝑡
T |M

1
T ,M

2
T ,M

3
T ,

∪𝑡𝑙=0M
4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 ) )

= 𝐼

(
{X𝑖 , y𝑖}𝑖∈H ; {ũ𝑖 𝑗 }𝑖∈H

𝑗∈T
,
{[ ∑︁
𝑘∈[𝐾 ]

u𝑖𝑘
]
𝑗

}
𝑖∈H
𝑗∈T

,

{X̃T
𝑖 �̂�(X̃𝑖 × w̃(𝑡)

𝑖
) − ũ𝑖}𝑖∈[𝑁 ] , {u(𝑡)𝑖𝑘 , z

(𝑡)
𝑖𝑙
} 𝑖∈T
𝑘∈[𝐶 ],𝑙∈[𝑇 ]

|M1
T ,

M2
T ,M

3
T ,∪

𝑡
𝑙=0M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 )
)

(202)

Recall that the local computations {X̃T
𝑖
�̂�(X̃𝑖 × w̃(𝑡)

𝑖
) − ũ𝑖}𝑖∈[𝑁 ]

correspond to evaluations of the polynomial 𝜑(𝛼) − 𝜙(𝛼) at
𝛼 ∈ {𝛼𝑖}𝑖∈[𝑁 ] . Next, consider a second set of coefficients 𝛽𝑘
for 𝑘 ∈ [𝐶], where 𝛽𝑘 is as defined in (29). We know that
polynomial 𝜑(𝛼)−𝜙(𝛼) has degree (2𝑟+1) (𝐾+𝑇−1) = 𝐶−1.
Any polynomial of degree 𝐶 − 1 can be uniquely determined
from any set of at least 𝐶 evaluation points. As 𝑁 ≥ (2𝑟 +
1) (𝐾 +𝑇 −1) +1 = 𝐶, there is a bijective mapping from any 𝐶
evaluation points {𝜑(𝛽𝑘 ) − 𝜙(𝛽𝑘 )}𝑘∈[𝐶 ] to a valid set of local
computations {X̃T

𝑖
�̂�(X̃𝑖× w̃(𝑡)

𝑖
) − ũ𝑖}𝑖∈[𝑁 ] . As a result, one can

rewrite (202) as follows,

𝐼

(
{X𝑖 , y𝑖}𝑖∈H ; {ũ𝑖 𝑗 }𝑖∈H

𝑗∈T
,
{[ ∑︁
𝑘∈[𝐾 ]

u𝑖𝑘
]
𝑗

}
𝑖∈H
𝑗∈T

,

{X̃T
𝑖 �̂�(X̃𝑖 × w̃(𝑡)

𝑖
) − ũ𝑖}𝑖∈[𝑁 ] , {u(𝑡)𝑖𝑘 , z

(𝑡)
𝑖𝑙
} 𝑖∈T
𝑘∈[𝐶 ],𝑙∈[𝑇 ]
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|M1
T ,M

2
T ,M

3
T ,∪

𝑡
𝑙=0M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 )
)

= 𝐻

(
{ũ𝑖 𝑗 }𝑖∈H

𝑗∈T
,
{[ ∑︁
𝑘∈[𝐾 ]

u𝑖𝑘
]
𝑗

}
𝑖∈H
𝑗∈T

,

{X̃T
𝑖 �̂�(X̃𝑖 × w̃(𝑡)

𝑖
) − ũ𝑖}𝑖∈[𝑁 ] , {u(𝑡)𝑖𝑘 , z

(𝑡)
𝑖𝑙
} 𝑖∈T
𝑘∈[𝐶 ],𝑙∈[𝑇 ]

|M1
T ,M

2
T ,M

3
T ,∪

𝑡
𝑙=0M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 )
)

− 𝐻
(
{ũ𝑖 𝑗 }𝑖∈H

𝑗∈T
,
{[ ∑︁
𝑘∈[𝐾 ]

u𝑖𝑘
]
𝑗

}
𝑖∈H
𝑗∈T

,

{X̃T
𝑖 �̂�(X̃𝑖 × w̃(𝑡)

𝑖
) − ũ𝑖}𝑖∈[𝑁 ] , {u(𝑡)𝑖𝑘 , z

(𝑡)
𝑖𝑙
} 𝑖∈T
𝑘∈[𝐶 ],𝑙∈[𝑇 ]

|M1
T ,M

2
T ,M

3
T ,∪

𝑡
𝑙=0M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T , {X𝑖 , y𝑖}𝑖∈[𝑁 ] ,w

(𝐽 )
)

= 𝐻

(
{ũ𝑖 𝑗 }𝑖∈H

𝑗∈T
,
{[ ∑︁
𝑘∈[𝐾 ]

u𝑖𝑘
]
𝑗

}
𝑖∈H
𝑗∈T

,

{𝜑(𝛽𝑘 ) − 𝜙(𝛽𝑘 )}𝑘∈[𝐶 ] , {u(𝑡)𝑖𝑘 , z
(𝑡)
𝑖𝑙
} 𝑖∈T
𝑘∈[𝐶 ],𝑙∈[𝑇 ]

|M1
T ,M

2
T ,M

3
T ,∪

𝑡
𝑙=0M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 )
)

− 𝐻
(
{ũ𝑖 𝑗 }𝑖∈H

𝑗∈T
,
{[ ∑︁
𝑘∈[𝐾 ]

u𝑖𝑘
]
𝑗

}
𝑖∈H
𝑗∈T

,

{𝜑(𝛽𝑘 ) − 𝜙(𝛽𝑘 )}𝑘∈[𝐶 ] , {u(𝑡)𝑖𝑘 , z
(𝑡)
𝑖𝑙
} 𝑖∈T
𝑘∈[𝐶 ],𝑙∈[𝑇 ]

|M1
T ,

M2
T ,M

3
T ,∪

𝑡
𝑙=0M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T , {X𝑖 , y𝑖}𝑖∈[𝑁 ] ,w

(𝐽 )
)

(203)

= 𝐻

(
{ũ𝑖 𝑗 }𝑖∈H

𝑗∈T
,
{[ ∑︁
𝑘∈[𝐾 ]

u𝑖𝑘
]
𝑗

}
𝑖∈H
𝑗∈T

,

{𝜑(𝛽𝑘 ) − u𝑘 }𝑘∈[𝐶 ] , {u(𝑡)𝑖𝑘 , z
(𝑡)
𝑖𝑙
} 𝑖∈T
𝑘∈[𝐶 ],𝑙∈[𝑇 ]

|M1
T ,M

2
T ,M

3
T ,∪

𝑡
𝑙=0M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 )
)

− 𝐻
(
{ũ𝑖 𝑗 }𝑖∈H

𝑗∈T
,
{[ ∑︁
𝑘∈[𝐾 ]

u𝑖𝑘
]
𝑗

}
𝑖∈H
𝑗∈T

,

{𝜑(𝛽𝑘 ) − u𝑘 }𝑘∈[𝐶 ] , {u(𝑡)𝑖𝑘 , z
(𝑡)
𝑖𝑙
} 𝑖∈T
𝑘∈[𝐶 ],𝑙∈[𝑇 ]

|M1
T ,

M2
T ,M

3
T ,∪

𝑡
𝑙=0M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T , {X𝑖 , y𝑖}𝑖∈[𝑁 ] ,w

(𝐽 )
)

(204)

where (204) holds since 𝜙(𝛽𝑘 ) = u𝑘 by definition from (32).
For the second term in (204), we find that,

𝐻

(
{ũ𝑖 𝑗 }𝑖∈H

𝑗∈T
,
{[ ∑︁
𝑘∈[𝐾 ]

u𝑖𝑘
]
𝑗

}
𝑖∈H
𝑗∈T

,

{𝜑(𝛽𝑘 ) − u𝑘 }𝑘∈[𝐶 ] , {u(𝑡)𝑖𝑘 , z
(𝑡)
𝑖𝑙
} 𝑖∈T
𝑘∈[𝐶 ],𝑙∈[𝑇 ]

|M1
T ,M

2
T ,M

3
T ,∪

𝑡
𝑙=0M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T , {X𝑖 , y𝑖}𝑖∈[𝑁 ] ,w

(𝐽 )
)

≥ 𝐻
(
{ũ𝑖 𝑗 }𝑖∈H

𝑗∈T
,
{[ ∑︁
𝑘∈[𝐾 ]

u𝑖𝑘
]
𝑗

}
𝑖∈H
𝑗∈T

, {𝜑(𝛽𝑘 ) − u𝑘 }𝑘∈[𝐶 ] ,

{u(𝑡)
𝑖𝑘
, z(𝑡)
𝑖𝑙
} 𝑖∈T
𝑘∈[𝐶 ],𝑙∈[𝑇 ]

|M1
T ,M

2
T ,M

3
T ,∪

𝑡
𝑙=0M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T ,

{X𝑖 , y𝑖}𝑖∈[𝑁 ] ,w
(𝐽 )
, {𝜑(𝛽𝑘 )}𝑘∈[𝐶 ]

)
(205)

= 𝐻

(
{ũ𝑖 𝑗 }𝑖∈H

𝑗∈T
,
{[ ∑︁
𝑘∈[𝐾 ]

u𝑖𝑘
]
𝑗

}
𝑖∈H
𝑗∈T

, {u𝑘 }𝑘∈[𝐶 ] ,

{u(𝑡)
𝑖𝑘
, z(𝑡)
𝑖𝑙
} 𝑖∈T
𝑘∈[𝐶 ],𝑙∈[𝑇 ]

)
(206)

= 𝐻

(
{ũ𝑖 𝑗 }𝑖∈H

𝑗∈T
,
{[ ∑︁
𝑘∈[𝐾 ]

u𝑖𝑘
]
𝑗

}
𝑖∈H
𝑗∈T

,

{
(M ⊗ I)

[
uT

1𝑘 · · · uT
𝑁 𝑘

]T
}
𝑘∈[𝐶 ]

, {u(𝑡)
𝑖𝑘
, z(𝑡)
𝑖𝑙
} 𝑖∈T
𝑘∈[𝐶 ],𝑙∈[𝑇 ]

)
(207)

= 𝐻

(
{ũ𝑖 𝑗 }𝑖∈H

𝑗∈T
,
{[ ∑︁
𝑘∈[𝐾 ]

u𝑖𝑘
]
𝑗

}
𝑖∈H
𝑗∈T

,{
(M ⊗ I)

[
uT

1𝑘 · · · uT
(𝑁−𝑇 )𝑘

]T
}
𝑘∈[𝐶 ]

,

{u(𝑡)
𝑖𝑘
, z(𝑡)
𝑖𝑙
} 𝑖∈T
𝑘∈[𝐶 ],𝑙∈[𝑇 ]

)
(208)

= 𝐻

(
{ũ𝑖 𝑗 }𝑖∈H

𝑗∈T
,
{[ ∑︁
𝑘∈[𝐾 ]

u𝑖𝑘
]
𝑗

}
𝑖∈H
𝑗∈T

, {u𝑖𝑘 } 𝑖∈H,
𝑘∈[𝐶 ]

)
+ 𝐻

(
{u(𝑡)
𝑖𝑘
, z(𝑡)
𝑖𝑙
} 𝑖∈T
𝑘∈[𝐶 ],𝑙∈[𝑇 ]

)
(209)

= 𝐻

(
{ũ𝑖 𝑗 }𝑖∈H

𝑗∈T
,
{[ ∑︁
𝑘∈[𝐾 ]

u𝑖𝑘
]
𝑗

}
𝑖∈H
𝑗∈T

, {u𝑖𝑘 } 𝑖∈H,
𝑘∈[𝐶 ]

)
+

(
𝑑

𝑁 − 𝑇 𝑇𝐶 +
𝑑

𝑁 − 𝑇 𝑇
2
)

log 𝑞 (210)

where (205) holds since conditioning cannot increase entropy;
(209) holds since M is a (𝑁−𝑇)× (𝑁−𝑇) MDS matrix (hence
invertible), and that the randomness generated by the honest
clients H = [𝑁−𝑇] is independent from the adversaries. Note
that {ũ𝑖 𝑗 } 𝑗∈T can be perfectly reconstructed from {u𝑖𝑘 }𝑘∈[𝐶 ]
using (29). Then, the first term in (210) can be rewritten as:

𝐻

(
{ũ𝑖 𝑗 }𝑖∈H

𝑗∈T
,
{[ ∑︁
𝑘∈[𝐾 ]

u𝑖𝑘
]
𝑗

}
𝑖∈H
𝑗∈T

, {u𝑖𝑘 } 𝑖∈H,
𝑘∈[𝐶 ]

)
= 𝐻

({[ ∑︁
𝑘∈[𝐾 ]

u𝑖𝑘
]
𝑗

}
𝑖∈H
𝑗∈T

, {u𝑖𝑘 } 𝑖∈H,
𝑘∈[𝐶 ]

)
(211)

=
∑︁
𝑖∈H

𝐻

({[ ∑︁
𝑘∈[𝐾 ]

u𝑖𝑘
]
𝑗

}
𝑗∈T , {u𝑖𝑘 }𝑘∈[𝐶 ]

)
(212)

=
∑︁
𝑖∈H

𝐻

({ ∑︁
𝑘∈[𝐾 ]

u𝑖𝑘 +
∑︁
𝑙∈[𝑇 ]

𝛾𝑙𝑗z𝑖𝑙
}
𝑗∈T

, {u𝑖𝑘 }𝑘∈[𝐶 ]
)

(213)

=
∑︁
𝑖∈H

𝐻

({ ∑︁
𝑘∈[𝐾 ]

u𝑖𝑘 +
∑︁
𝑙∈[𝑇 ]

𝛾𝑙𝑗z𝑖𝑙
}
𝑗∈T
|{u𝑖𝑘 }𝑘∈[𝐶 ]

)
+

∑︁
𝑖∈H

𝐻 ({u𝑖𝑘 }𝑘∈[𝐶 ]) (214)

=
∑︁
𝑖∈H

𝐻

({ ∑︁
𝑙∈[𝑇 ]

𝛾𝑙𝑗z𝑖𝑙
}
𝑗∈T
|{u𝑖𝑘 }𝑘∈[𝐶 ]

)
+
∑︁
𝑖∈H

𝐻 ({u𝑖𝑘 }𝑘∈[𝐶 ])

(215)
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=
∑︁
𝑖∈H

𝐻

({ ∑︁
𝑙∈[𝑇 ]

𝛾𝑙𝑗z𝑖𝑙
}
𝑗∈T

)
+

∑︁
𝑖∈H

𝐻 ({u𝑖𝑘 }𝑘∈[𝐶 ]) (216)

=
∑︁
𝑖∈H

𝐻 ((z𝑖1, . . . , z𝑖𝑇 )A) +
∑︁
𝑖∈H

𝐻 ({u𝑖𝑘 }𝑘∈[𝐶 ]) (217)

=
∑︁
𝑖∈H

𝐻 (z𝑖1, . . . , z𝑖𝑇 ) +
∑︁
𝑖∈H

𝐻 ({u𝑖𝑘 }𝑘∈[𝐶 ]) (218)

= (𝑁 − 𝑇)𝑇 𝑑

𝑁 − 𝑇 log 𝑞 + (𝑁 − 𝑇)𝐶 𝑑

𝑁 − 𝑇 log 𝑞 (219)

= (𝑇 + 𝐶)𝑑 log 𝑞 (220)

where (213) follows from (33); (214) follows from the chain
rule of entropy; (216) follows from the independence of
random vectors generated; (217) follows from the definition
of matrix A from (91); (218) holds since A is a 𝑇 × 𝑇 MDS
matrix (hence is invertible); (219) follows from the entropy
of uniform random variables. By combining (220) with (210),
we have the following for the second term in (204),

𝐻

(
{ũ𝑖 𝑗 }𝑖∈H

𝑗∈T
,
{[ ∑︁
𝑘∈[𝐾 ]

u𝑖𝑘
]
𝑗

}
𝑖∈H
𝑗∈T

, {𝜑(𝛽𝑘 ) − u𝑘 }𝑘∈[𝐶 ] ,

{u(𝑡)
𝑖𝑘
, z(𝑡)
𝑖𝑙
} 𝑖∈T
𝑘∈[𝐶 ],𝑙∈[𝑇 ]

|M1
T ,M

2
T ,M

3
T ,∪

𝑡
𝑙=0M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T ,

{X𝑖 , y𝑖}𝑖∈[𝑁 ] ,w
(𝐽 )

)
≥

(
𝑑

𝑁 − 𝑇 𝑇𝐶 +
𝑑

𝑁 − 𝑇 𝑇
2
)

log 𝑞 + (𝑇 + 𝐶)𝑑 log 𝑞 (221)

= (𝑇 + 𝐶)𝑑
(
1 + 𝑇

𝑁 − 𝑇

)
log 𝑞 (222)

For the first term in (204), we observe that,

𝐻

(
{ũ𝑖 𝑗 }𝑖∈H

𝑗∈T
,
{[ ∑︁
𝑘∈[𝐾 ]

u𝑖𝑘
]
𝑗

}
𝑖∈H
𝑗∈T

, {𝜑(𝛽𝑘 ) − u𝑘 }𝑘∈[𝐶 ] ,

{u(𝑡)
𝑖𝑘
, z(𝑡)
𝑖𝑙
} 𝑖∈T
𝑘∈[𝐶 ],𝑙∈[𝑇 ]

|M1
T ,M

2
T ,M

3
T ,∪

𝑡
𝑙=0M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T ,

{X𝑖 , y𝑖}𝑖∈T ,w
(𝐽 )

)
= 𝐻

(
{ũ𝑖 𝑗 }𝑖∈H

𝑗∈T
,
{[ ∑︁
𝑘∈[𝐾 ]

u𝑖𝑘
]
𝑗

}
𝑖∈H
𝑗∈T

,{
𝜑(𝛽𝑘 ) − (M ⊗ I)

[
uT

1𝑘 · · · uT
𝑁 𝑘

]T

}
𝑘∈[𝐶 ]

,

{u(𝑡)
𝑖𝑘
, z(𝑡)
𝑖𝑙
} 𝑖∈T
𝑘∈[𝐶 ],𝑙∈[𝑇 ]

���M1
T ,M

2
T ,M

3
T ,∪

𝑡
𝑙=0M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T ,

{X𝑖 , y𝑖}𝑖∈T ,w
(𝐽 )

)
(223)

= 𝐻

(
{ũ𝑖 𝑗 }𝑖∈H

𝑗∈T
,
{[ ∑︁
𝑘∈[𝐾 ]

u𝑖𝑘
]
𝑗

}
𝑖∈H
𝑗∈T

,{
𝜑(𝛽𝑘 ) − (M ⊗ I)

[
uT

1𝑘 · · · uT
(𝑁−𝑇 )𝑘

]T
}
𝑘∈[𝐶 ]

,

{u(𝑡)
𝑖𝑘
, z(𝑡)
𝑖𝑙
} 𝑖∈T
𝑘∈[𝐶 ],𝑙∈[𝑇 ]

���M1
T ,M

2
T ,M

3
T ,∪

𝑡
𝑙=0M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T ,

{X𝑖 , y𝑖}𝑖∈T ,w
(𝐽 )

)
(224)

Note that X̃T
𝑗
�̂�(X̃ 𝑗 × w̃(𝑡)

𝑗
) for any 𝑗 ∈ T can be perfectly

reconstructed by the adversaries, since the encoded dataset
and model X̃ 𝑗 , w̃(𝑡)𝑗 ∈ M1

T ,M
2
T ,M

3
T ,∪

𝑡
𝑙=0M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T for

𝑗 ∈ T is already known from previous stages. In addition, for
any 𝑗 ∈ T , the following holds,

(M ⊗ I)−1
(
X̃T
𝑗 �̂�(X̃ 𝑗 × w̃(𝑡)

𝑗
) −

∑︁
𝑘∈[𝐶 ]

(
𝜑(𝛽𝑘 )

− (M ⊗ I)
[
uT

1𝑘 · · · uT
(𝑁−𝑇 )𝑘

]T
) ∏
𝑙∈[𝐶 ]\{𝑘 }

𝛼 𝑗 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

)
= (M ⊗ I)−1

(
X̃T
𝑗 �̂�(X̃ 𝑗 × w̃(𝑡)

𝑗
)

−
∑︁
𝑘∈[𝐶 ]

𝜑(𝛽𝑘 )
∏

𝑙∈[𝐶 ]\{𝑘 }

𝛼 𝑗 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

+
∑︁
𝑘∈[𝐶 ]

(M ⊗ I)
[
uT

1𝑘 · · · uT
(𝑁−𝑇 )𝑘

]T ∏
𝑙∈[𝐶 ]\{𝑘 }

𝛼 𝑗 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

)
(225)

= (M ⊗ I)−1
(
X̃T
𝑗 �̂�(X̃ 𝑗 × w̃(𝑡)

𝑗
) − X̃T

𝑗 �̂�(X̃ 𝑗 × w̃(𝑡)
𝑗
)

+
∑︁
𝑘∈[𝐶 ]

(M ⊗ I)
[
uT

1𝑘 · · · uT
(𝑁−𝑇 )𝑘

]T ∏
𝑙∈[𝐶 ]\{𝑘 }

𝛼 𝑗 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

)
(226)

=

[ ∑︁
𝑘∈[𝐶 ]

uT
1𝑘

∏
𝑙∈[𝐶 ]\{𝑘 }

𝛼 𝑗 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

· · ·∑︁
𝑘∈[𝐶 ]

uT
(𝑁−𝑇 )𝑘

∏
𝑙∈[𝐶 ]\{𝑘 }

𝛼 𝑗 − 𝛽𝑙
𝛽𝑘 − 𝛽𝑙

]T
(227)

=

[
ũT

1 𝑗 · · · ũT
(𝑁−𝑇 ) 𝑗

]T
(228)

where (226) holds since X̃T
𝑗
�̂�(X̃ 𝑗 × w̃(𝑡)

𝑗
) = 𝜑(𝛼 𝑗 ) =∑

𝑘∈[𝐶 ] 𝜑(𝛽𝑘 )
∏
𝑙∈[𝐶 ]\{𝑘 }

𝛼𝑗−𝛽𝑙
𝛽𝑘−𝛽𝑙 , which can be observed

from polynomial interpolation, hence {ũ𝑖 𝑗 }𝑖∈H, 𝑗∈T
can be reconstructed from {X̃T

𝑗
�̂�(X̃ 𝑗 × w̃(𝑡)

𝑗
)} 𝑗∈T and{

𝜑(𝛽𝑘 ) − (M ⊗ I)
[
uT

1𝑘 · · · uT
(𝑁−𝑇 )𝑘

]T
}
𝑘∈[𝐶 ]

. Then, from

(228), the following holds for (224),

𝐻

(
{ũ𝑖 𝑗 }𝑖∈H

𝑗∈T
,
{[ ∑︁
𝑘∈[𝐾 ]

u𝑖𝑘
]
𝑗

}
𝑖∈H
𝑗∈T

,{
𝜑(𝛽𝑘 ) − (M ⊗ I)

[
uT

1𝑘 · · · uT
(𝑁−𝑇 )𝑘

]T
}
𝑘∈[𝐶 ]

,

{u(𝑡)
𝑖𝑘
, z(𝑡)
𝑖𝑙
} 𝑖∈T
𝑘∈[𝐶 ],𝑙∈[𝑇 ]

|M1
T ,M

2
T ,M

3
T ,∪

𝑡
𝑙=0M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T ,

{X𝑖 , y𝑖}𝑖∈T ,w
(𝐽 )

)
= 𝐻

(
{ũ𝑖 𝑗 }𝑖∈H

𝑗∈T

���{ [ ∑︁
𝑘∈[𝐾 ]

u𝑖𝑘
]
𝑗

}
𝑖∈H
𝑗∈T

,{
𝜑(𝛽𝑘 ) − (M ⊗ I)

[
uT

1𝑘 · · · uT
(𝑁−𝑇 )𝑘

]T
}
𝑘∈[𝐶 ]

,
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{u(𝑡)
𝑖𝑘
, z(𝑡)
𝑖𝑙
} 𝑖∈T
𝑘∈[𝐶 ],𝑙∈[𝑇 ]

,M1
T ,M

2
T ,M

3
T ,∪

𝑡
𝑙=0M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T ,

{X𝑖 , y𝑖}𝑖∈T ,w
(𝐽 )

)
+ 𝐻 (

{[ ∑︁
𝑘∈[𝐾 ]

u𝑖𝑘
]
𝑗

}
𝑖∈H
𝑗∈T

,{
𝜑(𝛽𝑘 ) − (M ⊗ I)

[
uT

1𝑘 · · · uT
(𝑁−𝑇 )𝑘

]T
}
𝑘∈[𝐶 ]

,

{u(𝑡)
𝑖𝑘
, z(𝑡)
𝑖𝑙
} 𝑖∈T
𝑘∈[𝐶 ],𝑙∈[𝑇 ]

|M1
T ,M

2
T ,M

3
T ,∪

𝑡
𝑙=0M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T ,

{X𝑖 , y𝑖}𝑖∈T ,w
(𝐽 )

)
(229)

= 𝐻

({[ ∑︁
𝑘∈[𝐾 ]

u𝑖𝑘
]
𝑗

}
𝑖∈H
𝑗∈T

,{
𝜑(𝛽𝑘 ) − (M ⊗ I)

[
uT

1𝑘 · · · uT
(𝑁−𝑇 )𝑘

]T
}
𝑘∈[𝐶 ]

,

{u(𝑡)
𝑖𝑘
, z(𝑡)
𝑖𝑙
} 𝑖∈T
𝑘∈[𝐶 ],𝑙∈[𝑇 ]

|M1
T ,M

2
T ,M

3
T ,∪

𝑡
𝑙=0M

4,𝑙
T ,∪

𝑡−1
𝑙=0M

5,𝑙
T ,

{X𝑖 , y𝑖}𝑖∈T ,w
(𝐽 )

)
(230)

≤ 𝐻
({[ ∑︁

𝑘∈[𝐾 ]
u𝑖𝑘

]
𝑗

}
𝑖∈H
𝑗∈T

,{
𝜑(𝛽𝑘 ) − (M ⊗ I)

[
uT

1𝑘 · · · uT
(𝑁−𝑇 )𝑘

]T
}
𝑘∈[𝐶 ]

,

{u(𝑡)
𝑖𝑘
, z(𝑡)
𝑖𝑙
} 𝑖∈T
𝑘∈[𝐶 ],𝑙∈[𝑇 ]

)
(231)

≤
(
(𝑁 − 𝑇)𝑇 𝑑

𝑁 − 𝑇 + 𝐶𝑑 + 𝑇𝐶
𝑑

𝑁 − 𝑇 + 𝑇
2 𝑑

𝑁 − 𝑇

)
log 𝑞

(232)

= (𝑇 + 𝐶)𝑑
(
1 + 𝑇

𝑁 − 𝑇

)
log 𝑞 (233)

where (229) follows from the chain rule of entropy; (230)
follows from (228); (231) holds since conditioning cannot
increase entropy, and (232) holds since entropy is maximized
by uniform distribution. By combining (222) and (233), we
find for the last term in (49) that:

0 ≤ 𝐼 ({X𝑖 , y𝑖}𝑖∈H ;M5,𝑡
T |M

1
T ,M

2
T ,M

3
T ,∪

𝑡
𝑙=0M

4,𝑙
T ,

∪𝑡−1
𝑙=0 M

5,𝑙
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 ) )

≤ (𝑇 + 𝐶)𝑑
(
1 + 𝑇

𝑁 − 𝑇

)
log 𝑞 − (𝑇 + 𝐶)𝑑

(
1 + 𝑇

𝑁 − 𝑇

)
log 𝑞

(234)
= 0 (235)

hence, the fifth term in (49) satisfies:

𝐼 ({X𝑖 , y𝑖}𝑖∈H ;M5,𝑡
T |M

1
T ,M

2
T ,M

3
T ,∪

𝑡
𝑙=0M

4,𝑙
T ,

∪𝑡−1
𝑙=0 M

5,𝑙
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 ) ) = 0 (236)

for all 𝑡 ∈ {0, . . . , 𝐽 − 1}.

Final Model Recovery. Finally, we consider the last term
in (49), which corresponds to the recovery of the final model
w(𝐽 ) by collecting the secret shares {[w(𝐽 ) ]𝑖}𝑖∈I from any set
I of size |I | ≥ 𝑇 + 1. From (166), the secret share of w(𝐽 ) at

client 𝑖 ∈ [𝑁] is given by,

[w(𝐽 ) ]𝑖 = w(𝐽 ) +
∑︁
𝑘∈[𝑇 ]

𝛾𝑘𝑖 s(𝐽 )
𝑘

for all 𝑖 ∈ [𝑁], (237)

which can be viewed as an evaluation point of a degree 𝑇
polynomial 𝜎(·) where 𝜎(0) = w(𝐽 ) is the true model and
[w(𝐽 ) ]𝑖 is an interpolation point held by client 𝑖 ∈ [𝑁].
Then, one can rewrite the last term in the mutual information
condition from (49) as,

𝐼 ({X𝑖 , y𝑖}𝑖∈H ;M6
T |M

1
T ,M

2
T ,M

3
T ,∪

𝐽−1
𝑙=0 M

4,𝑙
T ,

∪𝐽−1
𝑙=0 M

5,𝑙
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 ) )
= 𝐼 ({X𝑖 , y𝑖}𝑖∈H ; {[w(𝐽 ) ]𝑖}𝑖∈I |M1

T ,M
2
T ,M

3
T ,∪

𝐽−1
𝑙=0 M

4,𝑙
T ,

∪𝐽−1
𝑙=0 M

5,𝑙
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 ) ) (238)

= 𝐼 ({X𝑖 , y𝑖}𝑖∈H ; w(𝐽 ) , {[w(𝐽 ) ]𝑖}𝑖∈T |M1
T ,M

2
T ,M

3
T ,

∪𝐽−1
𝑙=0 M

4,𝑙
T ,∪

𝐽−1
𝑙=0 M

5,𝑙
T , {X𝑖 , y𝑖}𝑖∈T ,w

(𝐽 ) ) (239)

= 0 (240)

where (239) holds since any polynomial of degree 𝑇 can
be uniquely constructed from 𝑇 + 1 interpolation points.
Hence, there is a bijective mapping between {[w(𝐽 ) ]𝑖}𝑖∈I and
w(𝐽 ) , {[w(𝐽 ) ]𝑖}𝑖∈T . Finally, (240) holds since {[w(𝐽 ) ]𝑖}𝑖∈T ∈
M5,𝐽−1
T .

Combining Stages 1-6. By combining (49) with (76), (115),
(162), (201), and (236), we have,

𝐼 ({X𝑖 , y𝑖}𝑖∈H ;MT |{X𝑖 , y𝑖}𝑖∈T ,w
(𝐽 ) ) = 0 (241)

which completes the proof.
�

APPENDIX E
CORRECTNESS

The correctness of the encoding and decoding process
follows from the decodability of the Lagrange interpolation
polynomial [6], in particular, any polynomial 𝜑 of degree
deg(𝜑) can be uniquely reconstructed from any set of at least
deg(𝜑) + 1 interpolation points. As such, as long as the total
number of clients 𝑁 satisfy the minimum number identified
by the recovery threshold, i.e., 𝑁 −𝐷 ≥ (2𝑟 +1) (𝐾 +𝑇 −1) +1,
then one can correctly recover the final model w(𝐽 ) from the
gradient computations performed on the encoded datasets and
models. This completes the correctness for the model update
rule from (40).

We next study the model update rule from (47), and show
that it correctly recovers the target model from (40). For the
theoretical analysis, it is assumed that the finite field size is
sufficiently large to avoid overlap errors. From (47), at the end
of round 𝑡, each client holds a secret share [w(𝑡+1) ]𝑖 of the
updated model,

w(𝑡+1)

= 𝑀 (𝑟−1)𝑎𝑡+1w(𝑡) −
( ∑︁
𝑘∈[𝐾 ]

𝜑(𝛽𝑘 ) − 𝑀𝑟𝑎𝑡X𝑇 y
)

(242)

= 𝑀 (𝑟−1)𝑎𝑡+1w(𝑡) −
( 𝑟∑︁
𝑗=0
\ 𝑗𝑀

(𝑟− 𝑗)𝑎𝑡XT (X × w(𝑡) ) 𝑗
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− 𝑀𝑟𝑎𝑡X𝑇 y
)

(243)

We next describe a virtual variable w(𝑡)𝑣 , where w(0)𝑣 , w(0) ,
and

w(𝑡+1)𝑣 , w(𝑡)𝑣 −
1
𝑀

X𝑇 (�̂�(X×w(𝑡)𝑣 )−y) for 𝑡 ∈ {0, . . . , 𝐽−1},
(244)

which denotes the target model from (40), by letting 𝑀 = 𝑚/[.
Then, one can show that,

w(𝑡)

𝑀𝑎𝑡
= w(𝑡)𝑣 for all 𝑡 ≥ 1. (245)

Then, the proof follows by induction, by considering the
following steps.

1) (Base Case): For the base case (𝑡 = 0), it follows from
(243) that,

w(1) = 𝑀w(0) − (X𝑇
𝑟∑︁
𝑗=0
\ 𝑗 (X × w(0) ) 𝑗 − X𝑇 y) (246)

= 𝑀w(0) − (X𝑇 �̂�(X × w(0) ) − X𝑇 y) (247)

hence w(1)
𝑀

= w(1)𝑣 , which validates (245) for the base case.
2) (Induction step): Next, we assume that (245) holds for

an arbitrary 𝑡, and show that it also holds for 𝑡+1. From (243),
we have that,

w(𝑡+1)

= 𝑀 (𝑟−1)𝑎𝑡+1w(𝑡) − (
𝑟∑︁
𝑗=0
\ 𝑗𝑀

(𝑟− 𝑗)𝑎𝑡XT (X × w(𝑡) ) 𝑗

− 𝑀𝑟𝑎𝑡X𝑇 y) (248)

= 𝑀 (𝑟−1)𝑎𝑡+1𝑀𝑎𝑡w(𝑡)𝑣 − (
𝑟∑︁
𝑗=0
\ 𝑗𝑀

(𝑟− 𝑗)𝑎𝑡XT (X × 𝑀𝑎𝑡w(𝑡)𝑣 ) 𝑗

− 𝑀𝑟𝑎𝑡X𝑇 y) (249)

= 𝑀𝑟𝑎𝑡+1w(𝑡)𝑣 − (X
𝑇

𝑟∑︁
𝑗=0

𝑀 (𝑟− 𝑗)𝑎𝑡 \ 𝑗 (X × 𝑀𝑎𝑡w(𝑡)𝑣 ) 𝑗

− 𝑀𝑟𝑎𝑡X𝑇 y) (250)

= 𝑀𝑟𝑎𝑡+1w(𝑡)𝑣 − 𝑀𝑟𝑎𝑡 (X𝑇
𝑟∑︁
𝑗=0
\ 𝑗 (X × w(𝑡)𝑣 ) 𝑗 − X𝑇 y) (251)

= 𝑀𝑟𝑎𝑡+1w(𝑡)𝑣 − 𝑀𝑟𝑎𝑡 (X𝑇 �̂�(X × w(𝑡)𝑣 ) − X𝑇 y) (252)

= 𝑀𝑟𝑎𝑡+1
(
w(𝑡)𝑣 −

1
𝑀
(X𝑇 �̂�(X × w(𝑡)𝑣 ) − X𝑇 y)

)
(253)

= 𝑀𝑎𝑡+1w(𝑡+1)𝑣 (254)

where (249) follows from the fact that w(𝑡) = 𝑀𝑎𝑡w(𝑡)𝑣 since
(245) for round 𝑡 holds by assumption, (254) follows from
𝑎𝑡+1 = 𝑟𝑎𝑡 + 1 by definition, along with (244). Equation (254)
demonstrates that (245) also holds for 𝑡 + 1, which completes
the proof.
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