
162 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 1, JANUARY 2024

SCALR: Communication-Efficient Secure
Multi-Party Logistic Regression

Xingyu Lu, Hasin Us Sami , Graduate Student Member, IEEE, and Başak Güler , Member, IEEE

Abstract— Privacy-preserving coded computing is a popular
framework for multiple data-owners to jointly train machine
learning models, with strong end-to-end information-theoretic
privacy guarantees for the local data. A major challenge against
the scalability of current approaches is their communication
overhead, which is quadratic in the number of users. Towards
addressing this challenge, we present SCALR, a communication-
efficient collaborative learning framework for training logistic
regression models. To do so, we introduce a novel coded com-
puting mechanism, by decoupling the communication-intensive
encoding operations from real-time training, and offloading the
former to a data-independent offline phase, where the commu-
nicated variables are independent from training data. As such,
the offline phase can be executed proactively during periods of
low network activity. Communication complexity of the data-
dependent (online) training operations is only linear in the
number of users, greatly reducing the quadratic state-of-the-
art. Our theoretical analysis presents the information-theoretic
privacy guarantees, and shows that SCALR achieves the same
performance guarantees as the state-of-the-art, in terms of
adversary resilience, robustness to user dropouts, and model
convergence. Through extensive experiments, we demonstrate up
to 80× reduction in online communication overhead, and 6×
speed-up in the wall-clock training time compared to the state-
of-the-art.

Index Terms— Privacy-preserving distributed learning,
information-theory, decentralized training.

I. INTRODUCTION

MACHINE learning has led to recent breakthroughs
in a variety of fields. In many modern applications,

the data is privacy-sensitive (such as healthcare records or
geolocation data), and distributed across a large number of
data-owners. Information and coding theory offers a promising
approach to the design of privacy-preserving machine learning
(PPML) frameworks, called privacy-preserving coded comput-
ing, as initiated by the recent works [1], [2], [3], [4], [5].
These approaches build on Lagrange coded computing (LCC),
a popular framework for function computation over data

Manuscript received 1 November 2022; revised 11 May 2023;
accepted 15 August 2023. Date of publication 28 August 2023; date of current
version 17 January 2024. This research was sponsored in part by the NSF
CAREER Award CCF-2144927, OUSD (R&E)/RT&L under Cooperative
Agreement Number W911NF-20-2-0267, and the UCR OASIS Funding
Award. The views and conclusions contained in this document are those of
the authors. The associate editor coordinating the review of this article and
approving it for publication was M. Ji. (Corresponding author: Başak Güler.)

The authors are with the Department of Electrical and Computer Engineer-
ing, University of California at Riverside, Riverside, CA 92521 USA (e-mail:
xlu065@ucr.edu; hsami003@ucr.edu; bguler@ece.ucr.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCOMM.2023.3308954.

Digital Object Identifier 10.1109/TCOMM.2023.3308954

distributed across multiple users [1]. LCC allows computing
any multi-variate polynomial function f(X1), . . . , f(XK) of
degree deg f on a dataset X = (X1, . . . ,XK), while provid-
ing strong information-theoretic privacy guarantees against T
adversarial users, and robustness against S dropout (or strag-
gling) users, as long as N ≥ (T +K−1) deg f+S+1. To do
so, the dataset X is first encoded by combining the K parts
X1, . . . ,XK along with T random matrices R1, . . . ,RT using
the well-known Lagrange interpolation polynomial. Then, each
user i ∈ [N] receives an encoded dataset X̃i, and computes
the function f(X̃i) over the encoded dataset. At the end,
the true function values f(X1), . . . , f(XN) can be decoded
by collecting the computations performed on the encoded
datasets, via polynomial interpolation.

In the context of PPML, adversarial users are parties who try
to gain information on the privacy-sensitive data of other users.
In this work, our focus is on the honest but curious adversary
model, as is the most common threat model in PPML [5].
Such adversaries follow the protocol truthfully, but try to gain
additional information on the private data of honest users using
the information exchanged during the protocol. In a network of
N users, we assume that up to T users are adversarial, who
may collude with each other. Dropout and straggling users,
on the other hand, are parties who fail to send their messages
successfully during training, due to various reasons such as
poor connectivity, low battery, or device unavailability. Out of
N users, it is assumed that up to S users may drop out at any
given training round.

Collaborative privacy-preserving machine learning
(COPML) is a recent application of LCC to logistic
regression (a binary classification framework widely-used
due to its practicality and interpretability). In this approach,
the dataset X corresponds to the combination of N local
datasets, each held by a different user. Then, COPML
encodes X by first partitioning it into K parts, and then
combining the K parts along with T random matrices
using a Lagrange interpolation polynomial. The additional
randomness protects the privacy of sensitive local datasets
against any collusions between up to T adversarial users,
such that no information (in an information-theoretic sense)
about the datasets are revealed beyond the final model. At the
end, user i learns an encoded dataset X̃i whose size is only
(1/K)th of the original dataset X. The training computations
are then performed on the encoded datasets, as if they were
computed on the original datasets. As the network size N
grows, one can select a larger K, reducing the training load
per user, speeding up training. At the end, the final model

0090-6778 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 17,2024 at 20:22:43 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0009-2607-1927
https://orcid.org/0000-0002-3246-1667

LU et al.: SCALR: COMMUNICATION-EFFICIENT SECURE MULTI-PARTY LOGISTIC REGRESSION 163

is recovered using polynomial interpolation, by collecting
the local computations from a sufficient number of users,
as long as N ≥ (T + K − 1) deg f + S + 1. COPML
has shown significant (an order of magnitude) speed-up
in training compared to conventional cryptographic PPML
frameworks [5].

The major challenge of such privacy-preserving coded
machine learning approaches is the communication overhead.
This is due to the fact that the degree of the polynomial f(·)
doubles with every multiplication operation (associated with
gradient computations), which leads to an exponential increase
in the minimum number of users required for successful
decoding of the final model, since the number of users must
satisfy N ≥ (T +K−1) deg f +S+1. After several training
rounds, the degree deg f can grow to a level that the number
of users is no longer sufficient for correct decoding of the final
model. To prevent such a degree explosion, a communication-
intensive degree reduction step is carried out, to reduce the
polynomial degree after each training round. This process has
a communication complexity of O(N2) per training iteration,
creating a major bottleneck against scalability to large net-
works.

To address this challenge, in this work we pro-
pose SCALR, a Secure Communication-efficient Multi-party
Logistic Regression framework. The key intuition behind
SCALR is an online-offline communication trade-off for
Lagrange coding. Online communication depends on the local
datasets, hence should be carried out after training starts.
Offline communication is independent of the data and/or
the model, hence can be carried out in advance when the
network traffic is low, or paralellized with other components
of training. In doing so, SCALR introduces a novel encoding
and degree reduction strategy for Lagrange coding, which
achieves a highly-efficient (linear) online communication
overhead, as opposed to the quadratic online communica-
tion overhead of the state-of-the-art, while providing equal
adversary-resilience, robustness to user dropouts, and training
performance. Through extensive distributed experiments for
various image classification tasks, we observe that SCALR
reduces the online communication overhead by up to 80×,
and achieves 6× speed up in the wall-clock training time
compared to the state-of-the-art while achieving comparable
model accuracy. Our contributions can be summarized as
follows:
• We propose an online-offline communication trade-off for

Lagrange coding, where communication is decoupled into
data-dependent online and data-agnostic offline phases.

• We introduce SCALR, a communication-efficient logistic
regression framework with linear online communication
overhead, as opposed to the quadratic overhead of the
state-of-the-art.

• We present formal information-theoretic privacy guaran-
tees for SCALR, while achieving the adversary-resilience,
robustness to user dropouts, and model accuracy of the
state-of-the-art.

• Through extensive numerical experiments, we demon-
strate an order of magnitude reduction in the online
communication overhead compared to the state-of-the-art.

II. RELATED WORK

In addition to the coding-theoretic approaches, there are
three complementary approaches to PPML. Secure multi-party
computing (MPC) protocols are based on a cryptographic
primitive known as secret sharing, where parties inject ran-
domness to sensitive data, and computations are then per-
formed on the secret shared data [6], [7], [8], [9], [10], [11],
[12]. Secure MPC can provide information-theoretic privacy,
however, requires extensive communication and interaction
between the parties. As such, current constructions are limited
to 3-4 parties [13], [14], [15]. Recently, MPC has also been
utilized for gradient aggregation in federated learning, also
known as secure aggregation, where the aggregated gradi-
ent/model is revealed after each training round [16], [17], [18],
[19]. It has been shown, however, that the aggregated models
can still reveal private information over multiple training
rounds [20], [21]. In contrast, our focus is on end-to-end
training, where no intermediate model/gradient can be revealed
(even in aggregated form) beyond the final model.

Differential Privacy (DP) is a noisy release mechanism
that aims to protect the privacy of personally identifiable
information (PII) by injecting permanent noise (unlike MPC
or HE) to the computations, so that an adversary observing the
released model cannot backtrack whether a certain individual’s
information was used in the computations [22], [23], [24],
[25], [26], [27], [28]. Privacy in DP is quantified by the amount
of noise injected in the training computations; stronger privacy
requires higher noise, leading to a privacy-accuracy trade-off.
In contrast, our focus is on ensuring information-theoretic pri-
vacy throughout training, while preserving the accuracy of the
final model. Although beyond our current focus, we note that
the two can in principle be combined and benefit DP, as recent
works have shown that information-theoretic techniques can
boost DP accuracy [29].

Homomorphic encryption (HE) is a cryptographic frame-
work which allows computations to be performed on encrypted
data [30], [31]. The privacy guarantees of HE are based on
computational assumptions (adversaries have bounded com-
putational power), as opposed to information-theoretic privacy
(where adversaries may have unlimited computational power).
Computing in the encrypted domain is computationally-
intensive, and stronger privacy guarantees require a larger
encrypted data size, which limits scalability in larger networks.
As such, HE is primarily utilized for the inference task in
ML, as opposed to the more computationally-intensive training
(which is the focus of current work) [32], [33], [34], [35], [36],
[37].

III. SYSTEM MODEL

We consider a network of N users illustrated in Fig. 1,
where user i holds a local dataset Di consisting of |Di| data
points, represented by a |Di| × d matrix Xi, along with the
labels Yi ∈ {0, 1}|Di|. The collection of all local datasets
D ≜ D1 ∪ . . . ∪ DN is represented by a |D| × d matrix

X ≜ (X
T

i , . . . ,X
T

N)
T

where the ith row xi holds the features
of data point i ∈ D, and d is the number of features. The
corresponding labels are represented by a vector y ∈ {0, 1}|D|,

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 17,2024 at 20:22:43 UTC from IEEE Xplore. Restrictions apply.

164 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 1, JANUARY 2024

Fig. 1. System model. The collaborative learning architecture with N users.
User i ∈ [N] holds a dataset Di with labels Yi.

where the ith element yi ∈ {0, 1} denotes the label of data
point i ∈ |D|. The goal is to train a logistic regression model
w over X, by minimizing a cross entropy loss function:

F(w) =
1
|D|

|D|∑
i=1

(−yi log ŷi − (1− yi) log(1− ŷi)) (1)

where ŷi = g(xi × w) ∈ (0, 1) is the probability of label
i being equal to 1, and g(x) ≜ 1/(1 + e−x) is the sigmoid
function. The model is trained via gradient descent with a
learning rate η,

w(t+1) = w(t) − η

|D|
XT (g(X×w(t))− y) (2)

where ∇F(w) ≜ 1
|D|X

T (g(X×w)−y) is the gradient, w(t)

is the state of the model at training iteration t, and function
g(·) is applied element-wise over X×w(t). At each training
round, up to S users may drop out from the system (e.g., due
to poor channel quality, low battery etc).

A. Threat Model

We consider an honest-but curious adversary model (most
common threat model in PPML [2], [3], [4], [5]), where
adversaries follow the protocol, but try to reveal the datasets
of honest users using the messages exchanged during training.
From N users, up to T are adversarial (who may collude with
each other) denoted by a set T . Honest users are denoted by
a set H = [N]\T .

B. Information-Theoretic Privacy

Our goal is to ensure that adversaries learn no information
about the local datasets of honest users, beyond the final
model. Formally, for all T such that |T | ≤ T , and J being
the total the number of training rounds, this condition can be
stated as,

I({Di,Yi}i∈[N]\T ;MT |{Di,Yi}i∈T ,w(J)) = 0 (3)

where I denotes the mutual information, and MT is the
collection of all messages received by adversaries. Similar
to [2], [4], [5], and [3], our framework is bound to finite field
operations, which requires the representation of datasets in a
finite field. As such, in the sequel, we assume that all datasets
are represented in a finite field Fq of integers modulo a large
prime q, and all operations are carried out in Fq . For space
considerations, we refer to [2], [4], [5], and [3] for the details
of this mapping.

C. Background and Challenges

In order to solve (1) under the constraint (3), the state-of-
the-art is the COPML framework from [5]. In this setup, user
i ∈ [N] first secret shares its local dataset Xi ∈ FD×d

q using
Shamir’s T -out-of-N secret sharing (detailed in Appendix A),
by sending a secret share [Xi]j ∈ FD×d

q to each user j ∈
[N] where D = |Di| for i ∈ [N]. This has a (quadratic)
total communication overhead of O(N2Dd) across the N
users. Then, Lagrange encoding is performed using the secret
shares. To do so, user i ∈ [N] concatenates the received
shares {[Xj]i}j∈[N], partitions it into K equal-sized shards
{[Xk]i}k∈[K], forms a Lagrange interpolation polynomial of
degree K + T − 1,

[ϕ(z)]i ≜
∑

k∈[K]

[Xk]i
∏

l∈[K+T]\{k}

z − βl

βk − βl

+
K+T∑

l=K+1

[Vk]i
∏

l∈[K+T]\{k}

z − βl

βk − βl
(4)

where [ϕ(βk)]i = [Xk]i for k ∈ [K] and i ∈ [N], and sends
an evaluation [X̃j]i ≜ [ϕ(αj)]i to user j ∈ [N]. Here, [Vk]i
denotes the secret share of a random matrix Vk ∈ F

D
K×d
q

for k ∈ [T] generated by a crypto-service provider [5].
Upon receiving {[X̃i]j}j∈[N], client i ∈ [N] recovers its
encoded matrix X̃i through polynomial interpolation. The
total communication overhead of this stage across the N
users is O(N2

K Dd). The model w(t) is encoded similarly;
at each round t ∈ [J], user i learns an encoded model
w̃(t)

i . The encoded dataset X̃i and model w̃(t)
i correspond to

evaluation points of the following degree K+T −1 Lagrange
polynomials,

ϕ(z) =
∑

k∈[K]

Xk

∏
l∈[K+T]\{k}

z − βl

βk − βl

+
K+T∑

l=K+1

Vk

∏
l∈[K+T]\{k}

z − βl

βk − βl
(5)

ψ(t)(z) ≜
∑

k∈[K]

w(t)
∏

l∈[K+T]\{k}

z − βl

βk − βl

+
K+T∑

k=K+1

v(t)
k

∏
l∈[K+T]\{k}

z − βl

βk − βl
(6)

where X̃i = ϕ(αi) and w̃(t)
i = ψ(t)(αi), respectively, and

{Vk,v
(t)
k }k∈{K+1,...,K+T} are random masks that hide the

true dataset (X1, . . . ,XK) and model w(t) against up to T
adversaries.

D. Degree Explosion

Using the encoded dataset and model, user i ∈ [N]
computes a local gradient f(X̃i, w̃(t)), which is then used
to update the model. After multiple training rounds, the
final model w(J)

i is decoded via polynomial interpolation,
by collecting the computations from at least deg(f)+1 users.
On the other hand, the degree deg f grows exponentially over
the iterations, leading to a degree-explosion after multiple

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 17,2024 at 20:22:43 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALR: COMMUNICATION-EFFICIENT SECURE MULTI-PARTY LOGISTIC REGRESSION 165

rounds, preventing correct recovery of the final model. We next
demonstrate degree explosion with an illustrative example. The
gradient f(X̃i, w̃(0)) ≜ X̃T

i ĝ(X̃i× w̃(0)
i) computed by user i

at round t = 0 corresponds to a degree (2r + 1)(K + T − 1)
polynomial, where ĝ(·) is a degree r polynomial approxi-
mation of the sigmoid function (as detailed in Section IV).
Then, from (2), the encoded model w̃(1) at round t = 1 will
have degree (2r + 1)(K + T − 1), and the corresponding
gradient f(X̃i, w̃(1)) ≜ X̃T

i ĝ(X̃i × w̃(1)
i) will have degree

(K + T − 1) + r((K + T − 1) + (2r + 1)(K + T − 1)) =
(2r2 +2r+1)(K+T −1). After J training rounds, the degree
will grow to deg(f) = (2rJ +2rJ−1+. . .+2r+1)(K+T−1),
requiring the local computations from at least deg(f)+1 users
to decode the final model. As the number of iterations grow,
the total number of users will no longer be sufficient to decode
the model. This necessitates a communication-intensive degree
reduction step (described in Appendix A) after each training
round, where user i ∈ [N] secret shares its local gradient
X̃T

i ĝ(X̃i × w̃(t)
i) ∈ Fd×1

q using Shamir’s T -out-of-N secret
sharing, by sending a secret share [X̃T

i ĝ(X̃i × w̃(t)
i)]j to

each user j ∈ [N]. This incurs a quadratic O(N2d) total
communication overhead (across N users) per round. Unlike
dataset encoding, the degree reduction operation is repeated
at each training round, hence the overhead increases as the
number of training rounds increase. The data-reliant nature
of this communication requires online communication during
training, leading to limited scalability in low-bandwidth envi-
ronments.

E. Main Problem

In this work, our goal is to address this challenge. In partic-
ular, we seek to develop an efficient framework that decouples
the communication-intensive operations from real-time train-
ing. To this end, we separate the overall communication into
two phases:

1) Online phase depends on the training data, hence can
only take place after training starts. For fast training, it is crit-
ical to have a highly efficient online communication protocol.

2) Offline phase is independent from the training data,
such as randomness generation. Hence, offline phase can take
place way in advance before training starts, when the network
traffic is low, or can be parallelized with other components of
training, such as gradient computations.

Our goal is to develop a PPML framework with highly effi-
cient online communication, whose overhead is no greater than
O(N) (linear in the number of users), along with an offline
communication component whose overhead is no greater than
O(N2). We ask the following:
• How can we solve (1) under the information-theoretic

guarantees from (3), with linear online communication
complexity?

To address this challenge, in this work we introduce
SCALR, a communication-efficient logistic regression frame-
work with linear online communication overhead. The key
contribution is a novel encoding and degree reduction strategy
with a linear online communication overhead of O(N) (broad-
cast), as opposed to the former O(N2) (point-to-point) online

TABLE I
ONLINE COMMUNICATION OVERHEAD OF SCALR WITH RESPECT TO

COPML, WITH |Di| = D FOR ALL i ∈ [N]

overhead of the state-of-the-art. To do so, SCALR decouples
the communication-intensive operations for coding and model
updating, and offloads them to a data-agnostic offline phase,
which can be performed in advance during low network traffic.
We next describe the details of SCALR.

IV. THE SCALR FRAMEWORK

SCALR consists of five main components shown in Table I,
where the online communication overhead of each component
is compared with respect to COPML [5]. The offline phases
do not depend on online/offline phases from previous stages,
hence can be fully carried out in advance and in parallel,
independently from other components. As such, user dropouts
are assumed to occur only during the online phase, and after
the dataset encoding and label secret sharing stages. For the
latter, if any users drop out during dataset encoding/label
secret sharing, training can proceed by removing such dropout
users from the protocol. We next describe the details of each
component. Table II provides the list of notations used in the
sequel.

Stage 1: Dataset Encoding. The first stage of SCALR is
Lagrange encoding of the datasets, which enables the training
computations to be handled efficiently, while hiding the con-
tents of the local datasets. The encoding process consists of
the following online and offline phases.

(Offline): Initially, users agree on N+K+T distinct public
parameters {αj}j∈[N] and {βj}j∈[K+T] from Fq . User i ∈ [N]

then generates K + T random matrices Rik ∈ F
|Di|

K ×d
q for

k ∈ [K], Vik ∈ F
|Di|

K ×d
q for k ∈ {K + 1, . . . ,K + T}, and

forms a Lagrange polynomial of degree K + T − 1:

ϕi(z) =
∑

k∈[K]

Rik

∏
l∈[K+T]\{k}

z − βl

βk − βl

+
K+T∑

k=K+1

Vik

∏
l∈[K+T]\{k}

z − βl

βk − βl
(7)

where the additional randomness {Vik}k∈{K+1,...,K+T} is
to hide the true contents of {Rik}k∈[K] against up to T
adversaries, and sends to each user j ∈ [N] an encoded
random matrix,

R̃ij ≜ ϕi(αj). (8)

The key intuition behind (7) is to perform Lagrange coding on
the random matrices, which can be handled offline, as opposed
to directly on the data (which should be handled online during
training). The Lagrange coded random matrices {R̃ji}j∈[N]

will later be used to construct a Lagrange coded dataset

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 17,2024 at 20:22:43 UTC from IEEE Xplore. Restrictions apply.

166 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 1, JANUARY 2024

TABLE II
LIST OF NOTATIONS AND DEFINITIONS

X̃i at each user i ∈ [N] as in (5), but with a linear
communication overhead. This allows us to decouple the
communication-intensive encoding operations from real-time
training, by moving the quadratic communication overhead to
the offline phase.

(Online): In the online phase, each user i ∈ [N] partitions
its local dataset Di into K submatrices (Xi1, . . . ,XiK) each
of size |Di|

K × d, and broadcasts,

X̂ik = Xik −Rik ∀k ∈ [K]. (9)

After receiving {X̂1k, . . . , X̂Nk}k∈[K], user i generates an
encoded dataset:

X̃i ≜
∑

k∈[K]

[
X̂T

1k · · · X̂T
Nk

]T ∏
l∈[K+T]\{k}

αi − βl

βk − βl

+
[
R̃T

1i · · · R̃T
Ni

]T

(10)

=
∑

k∈[K]

Xk

∏
l∈[K+T]\{k}

αi − βl

βk − βl

+
K+T∑

k=K+1

Vk

∏
l∈[K+T]\{k}

αi − βl

βk − βl
(11)

where {R̃ji}j∈[N] are defined in (8). The key intuition behind
(10) is to simultaneously cancel the additive randomness
{Rjk}j∈[N],k∈[K], and form a Lagrange polynomial to encode
the datasets,

ϕ(z) ≜
∑

k∈[K]

Xk

∏
l∈[K+T]\{k}

z − βl

βk − βl

+
K+T∑

k=K+1

Vk

∏
l∈[K+T]\{k}

z − βl

βk − βl

(12)

where Xk ≜
[
XT

1k · · · XT
Nk

]T
and Vk ≜

[
VT

1k · · · VT
Nk

]T
,

such that ϕ(βk) = Xk for all k ∈ [K]. The encoded dataset at
user i ∈ [N] then corresponds to X̃i = ϕ(αi). The additional
randomness {Vk}k∈{K+1,...,K+T} hides the contents of the
datasets against up to T adversaries.

Stage 2: Label Secret Sharing. In order to update
the model as in (2), users also need to compute XT y =∑

i∈[N]

∑
l∈Di

xT
l yl. In doing so, the computation should not

reveal the true content of the labels. In SCALR, this is handled
by the following offline and online phases.

(Offline): User i ∈ [N] generates a random vector ai ∈
Fd×1

q , and secret shares it with other users, using Shamir’s
T -out-of-N secret sharing (details of Shamir’s secret sharing
is available in Appendix A). The secret share sent from user
i to user j is denoted by [ai]j ∈ Fd×1

q .
(Online): User i ∈ [N] locally computes

∑
l∈Di

xT
l yl, and

broadcasts,

âi ≜
(∑

l∈Di

xT
l yl

)
− ai. (13)

After receiving {âj}j∈[N], user i ∈ [N] can compute a secret
share of XT y as follows:

[XT y]i ≜
∑

j∈[N]

(âj + [aj]i)

=
∑

j∈[N]

((∑
l∈Dj

xT
l yl

)
− aj + [aj]i

)
=

[∑
j∈[N]

∑
l∈Dj

xT
l yl

]
i

(14)

since summing the shares of multiple variables leads to a secret
share of the sum (Appendix A).

Stage 3: Model Initialization. The model at time t =
0 (i.e., w(0)) is initialized randomly within Fq . In doing so,
to preserve the privacy of intermediate computations, its true
value should not be revealed to any user. To do so, each user
i ∈ [N] generates a random vector w(0)

i ∈ Fd
q , and secret

shares it using Shamir’s T -out-of-N secret sharing, where the
secret share sent from user i to user j is denoted by [w(0)

i]j .
After receiving {[w(0)

j]i}j∈[N] user i ∈ [N] computes,

[w(0)]i ≜
∑

j∈[N]

[w(0)
j]i = [

∑
j∈[N]

w(0)
j]i (15)

where w(0) =
∑

i∈[N] w
(0)
i denotes the initialized model at

round t = 0. At the end of (15), user i obtains a secret share
[w(0)]i of the initial model w(0) =

∑
i∈[N] w

(0)
i , but the real

value of w(0)
i cannot be recovered by any group of up to T

users. This stage can be fully carried out offline.
Stage 4: Model Encoding. At each training round, users

encode the current state of the model w(t), to preserve its
privacy and enable gradient computations to be performed on
encoded data. At the beginning of each round t, user i holds a
secret share [w(t)]i of w(t). Initially, at round t = 0, [w(0)]i is

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 17,2024 at 20:22:43 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALR: COMMUNICATION-EFFICIENT SECURE MULTI-PARTY LOGISTIC REGRESSION 167

generated as in (15). For all other rounds (i.e., t > 0), [w(t)]i
is obtained at the end of the model update in (33), which will
be described later. Using the secret shares [w(t)]i, the model
w(t) is encoded as we describe next, where user i learns an
encoded model w̃(t)

i .
(Offline): User i ∈ [N] generates T + 1 random vectors

r(t)
i ∈ Fd×1

q and v(t)
ik ∈ Fd×1

q for k ∈ {K + 1, . . . ,K +
T}, and then secret shares r(t)

i using Shamir’s T -out-of-N
secret sharing. The secret share sent from user i to user j is
denoted by [r(t)

i]j . In addition, user i ∈ [N] encodes r(t)
i by

constructing a Lagrange polynomial of degree K + T − 1,

ψ
(t)
i (z) ≜

∑
k∈[K]

r(t)
i

∏
l∈[K+T]\{k}

z − βl

βk − βl

+
K+T∑

k=K+1

v(t)
ik

∏
l∈[K+T]\{k}

z − βl

βk − βl

(16)

where v(t)
ik ∈ Fd

q are generated uniformly at random, and sends
an encoded vector,

r̃(t)
ij ≜ ψ

(t)
i (αj) (17)

to each user j ∈ [N]. After receiving {r̃ji}j∈[N], user i
aggregates them,

r̃(t)
i =

∑
j∈[N]

r̃(t)
ji =

∑
k∈[K]

r(t)
∏

l∈[K+T]\{k}

αi − βl

βk − βl

+
K+T∑

k=K+1

v(t)
k

∏
l∈[K+T]\{k}

αi − βl

βk − βl
(18)

where r(t) ≜
∑

j∈[N] r
(t)
j and v(t)

k ≜
∑

j∈[N] v
(t)
jk . Finally,

user i aggregates the secret shares {[r(t)
j]i}j∈[N] received from

users j ∈ [N], to generate a secret share of r(t) as follows,∑
j∈[N]

[r(t)
j]i = [

∑
j∈[N]

r(t)
j]i = [r(t)]i (19)

(Online): In this phase, user i broadcasts a secret share
[ŵ(t)]i of ŵ(t) ≜ w(t) − r(t), defined as,

[ŵ(t)]i ≜ [w(t)]i − [r(t)]i = [w(t) − r(t)]i (20)

where the last equality follows from the additivity property
of Shamir’s secret sharing from Appendix A, i.e., summing
the shares of two secrets leads to a secret share of their sum.
Specifically, by denoting the two secret shares as [w(t)]i =
w(t) +

∑
l∈[T] α

l
inl and [r(t)]i = r(t) +

∑
l∈[T] α

l
in
′
l, where

nl ∈ Fd
q and n′l ∈ Fd

q are uniformly random vectors,
we observe that,

[w(t)]i − [r(t)]i = (w(t) − r(t))

+
∑
l∈[T]

αl
i(nl − n′l) = [w(t) − r(t)]i (21)

is a share of the secret w(t)−r(t), where the secret is hidden by
T uniformly random masks nl − n′l for l ∈ [T]. Accordingly,
by broadcasting [ŵ(t)]i = [w(t)]i − [r(t)]i, user i broadcasts
a secret share of w(t) − r(t). Let U1 ⊆ [N] denote the set of

surviving users at this stage. After receiving [ŵ(t)]i from any
set U1 of |U1| ≥ T + 1 users, each user can decode:

ŵ(t) = w(t) − r(t). (22)

via polynomial interpolation, where the true model w(t) is
hidden by the random vector r(t). Finally, each user i ∈ [N]
constructs an encoded model:

w̃(t)
i ≜

∑
k∈[K]

ŵ(t)
∏

l∈[K+T]\{k}

αi − βl

βk − βl
+ r̃(t)

i (23)

=
∑

k∈[K]

w(t)
∏

l∈[K+T]\{k}

αi − βl

βk − βl

+
K+T∑

k=K+1

v(t)
k

∏
l∈[K+T]\{k}

αi − βl

βk − βl
(24)

where the T random vectors {v(t)
k }k∈{K+1,...,K+T} hide the

contents of w(t) against up to T adversaries. Intuitively, (24)
embeds the model w(t) in a Lagrange polynomial of degree
K + T − 1,

ψ(t)(z) ≜
∑

k∈[K]

w(t)
∏

l∈[K+T]\{k}

z − βl

βk − βl

+
K+T∑

k=K+1

v(t)
k

∏
l∈[K+T]\{k}

z − βl

βk − βl
(25)

and at the end user i obtains an encoded model w̃(t)
i =

ψ(t)(αi).
Stage 5: Gradient Computing and Model Update. The

last component of SCALR is to compute the gradients and
update the model. As detailed in Section III, Lagrange coding
is bound to polynomial computations. On the other hand, the
sigmoid function from (1) is not a polynomial, hence is often
approximated using a polynomial function ĝ(x) =

∑r
i=0 θix

i,
where coefficients {θi}i∈[r] are public parameters fitted via
least squares [5]. The degree r quantifies the accuracy of
approximation [38]. Given ĝ(·), the model update from (2)
can be rewritten as:

w(t+1) = w(t) − η

|D|
XT (ĝ(X×w(t))− y). (26)

Then, gradient computing and model updates consist of the
following online and offline phases.

(Offline): User i ∈ [N] generates a uniformly random vector
u(t)

i ∈ Fd
q , and secret shares it via Shamir’s T -out-of-N secret

sharing, where the secret share sent to user j is denoted by
[u(t)

i]j .
(Online): In the online phase, user i ∈ [N] locally computes

a gradient,

f(X̃i, w̃
(t)
i) ≜ X̃T

i ĝ(X̃i × w̃(t)
i) (27)

using the coded dataset X̃i and model w̃(t)
i , and broadcasts,

û(t)
i ≜ f(X̃i, w̃

(t)
i)− u(t)

i = X̃T
i ĝ(X̃i × w̃(t)

i)− u(t)
i (28)

where the true content of X̃T
i ĝ(X̃i × w̃(t)

i) is hidden by the
random vector u(t)

i . Next, users decode the gradients and

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 17,2024 at 20:22:43 UTC from IEEE Xplore. Restrictions apply.

168 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 1, JANUARY 2024

Algorithm 1 SCALR - Offline Phase
Input: Number of users N , polynomial coefficients

(α1, . . . , αN), (β1, . . . , βK).
Output: Random vectors {R̃ij , [ai]j}i,j∈[N],

{r̃(t)
i , [rt]i, [u

(t)
i]j}i∈[N],t∈{0,...,J−1}, and

{[w(0)]i}i∈[N].
1 for user i = 1, . . . , N do
2 Encode random matrices

{Rik}k∈[K],{Vik}k∈{K+1,...,K+T} from (7), send the
encoded matrix R̃ij to user j∈ [N].

3 for user i = 1, . . . , N do
4 Generate a random vector ai from Fq , send a secret

share [ai]j to user j ∈ [N].
5 for user i = 1, . . . , N do
6 Generate a random vector w(0)

i from Fq , send a
secret share [w(0)

i]j to user j ∈ [N]
7 for user i = 1, . . . , N do
8 Initialize the model [w(0)]i =

∑
j∈[N][w

(0)
j]i as given

in (15).
9 for iteration t = 0, . . . , J − 1 do

10 for user i = 1, . . . , N do
11 Encode the random vectors {r(t)

ik }k∈[K],
{v(t)

ik }k∈{K+1,...,K+T} from (17).
12 for j = 1, . . . , N do
13 Send the encoded vector r̃(t)

ij and secret share
[r(t)

i]j to user j.
14 for user i = 1, . . . , N do
15 Aggregate the coded vectors r̃(t)

i =
∑

j∈[N] r̃
(t)
ji

and secret shares [r(t)]i =
∑

j∈[N][r
(t)
j]i as in

(18), (19).
16 for user i = 1, . . . , N do
17 Generate a random vector u(t)

i from Fq , and send
a secret share [u(t)

i]j to user j ∈ [N].

update the model, but without learning their true content. This
is achieved by polynomial interpolation, where we define a
polynomial h(t)(z) = f(ϕ(z), ψ(t)(z)) such that,

h(t)(αi) = f(ϕ(αi), ψ(t)(αi))

= f(X̃i, w̃
(t)
i) = X̃T

i ĝ(X̃i × w̃(t)) (29)

h(t)(βk) = f(ϕ(βk), ψ(t)(βk))

= f(Xk,w(t)) = XT
k ĝ(Xk ×w(t)) for k ∈ [K]

(30)

Let U2 ⊆ U1 ⊆ [N] denote the set of surviving users at this
stage. Then, after receiving û(t)

j from any set of users j ∈
U2 of size at least |U2| ≥ deg(h) + 1 = (2r + 1)(K + T −
1) + 1, user i can compute a secret share of f(Xk,w(t)) =
XT

k ĝ(Xk ×w(t)) as follows,

[f(Xk,w(t))]i ≜
∑
j∈I

(û(t)
j + [u(t)

j]i)
∏

l∈I\{j}

βk− αl

αj− αl
∀k ∈ [K],

(31)

Algorithm 2 SCALR - Online Phase
Input: Dataset (D,y) = ((D1,y1), . . . , (DN ,yN))

distributed across N users.
Output: Model parameters w(J) after J training rounds.

1 for user i = 1, . . . , N do
2 Partition Di into K shards (Xi1, . . . ,XiK), broadcast

the masked dataset X̂ik = Xik −Rik for k ∈ [K].
3 for user i = 1, . . . , N do
4 Generate the coded dataset X̃i as given in (10).
5 for user i = 1, . . . , N do
6 Broadcast

(∑
l∈Di

xT
l yl

)
− ai.

7 for user i = 1, . . . , N do
8 Compute a secret share

[XT y]i =
∑

j∈[N](âj + [a(t)
j]i) of the labels as given

in (14).
9 for iteration t = 0, . . . , J − 1 do

10 for i = 1, . . . , N do
11 Broadcast [ŵ(t)]i from (20).
12 for i = 1, . . . , N do
13 Decode ŵ(t) ≜ w(t) − r(t) using polynomial

interpolation, compute the encoded model w̃(t)
i .

14 for user i = 1, . . . , N do
15 Compute the gradient

f(X̃i, w̃
(t)
i)=X̃T

i ĝ(X̃i × w̃(t)
i) in (27), broadcast

û(t)
i =X̃T

i ĝ(X̃i×w̃(t)
i)−u(t)

i in (28).
16 for user i = 1, . . . , N do
17 Decode the gradient [XT ĝ(X×w(t))]i as given

in (32), update the model as given in (33).

and then sum them up to obtain a secret share of XT ĝ(X ×
w(t)) =

∑
i∈[N] X

T
i ĝ(Xi ×w(t)),∑

k∈[K]

[f(Xk,w(t))]i = [
∑

k∈[K]

f(Xk,w(t))]i

= [
∑

i∈[N]

XT
i ĝ(Xi ×w(t))]i

= [XT ĝ(X×w(t))]i (32)

After computing the gradient, users update the model. Note
that SCALR relies on finite field polynomial operations, bound
to finite field addition and multiplications. Conversely, the
model update in (2) requires a division. To handle this, one
approach is to treat model updating as an integer operation
(assuming a large field size), as detailed in Appendix B.
In practice, one can also apply the secure truncation protocol
from [39] and [5] to update the model according to (26),

[w(t+1)]i = [w(t)]i −
η

|D|
([XT ĝ(X×w(t))]i − [XT y]i),

(33)

where η is selected such that |D|
η ∈ Fq , at the end of which

user i obtains a secret share [w(t+1)]i of the updated model
w(t+1) for the next training round. This protocol takes as
input the secret shares {[z]i}i∈[N] of a variable z (client i
holds a share [z]i), and two public integer parameters p1 and

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 17,2024 at 20:22:43 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALR: COMMUNICATION-EFFICIENT SECURE MULTI-PARTY LOGISTIC REGRESSION 169

p2 such that 0 < p1 < p2, and z ∈ F2p2 . Then, the protocol
returns the secret shares of the variable ⌊ z

2p1 ⌋+ u where u is
a binary random variable with probability P [u = 1] = (z
mod 2p1)/2p1 . This quantization is unbiased, ensuring the
convergence of training [5].

Final Model. After J training rounds, the final model w(J)

is decoded by collecting the secret shares [w(J)]i from any
set of T + 1 users, and using polynomial interpolation. The
offline and online components of SCALR are presented in
Algorithms 1 and 2, respectively.

Remark 1: The use of Shamir’s secret sharing in model
encoding/update builds on two key intuitions: 1) In contrast
to dataset encoding where the individual users can observe
their local datasets in the clear, the true model should be kept
private from all users, during both model encoding and update
stages throughout the training. 2) During the model update,
gradients corresponding to different data points, including
those that are mapped to different Lagrange coefficients in
the coded dataset, should be accumulated. In our framework,
this is handled by using Shamir’s secret sharing, to decode
and sum up the gradients evaluated at different Lagrange
coefficients, without revealing their true value to any user.

V. THEORETICAL ANALYSIS

A. Privacy

We first present the information-theoretic privacy guarantees
of SCALR from (3).

Theorem 1: (Information-theoretic privacy) SCALR guar-
antees information theoretic-privacy:

I({Xi,Yi}i∈H;MT |{Xi,Yi}i∈T ,w(J)) = 0 (34)

against any set of adversaries T ⊆ [N] such that |T | ≤
T , where MT denotes the collection of all messages held
(received or generated) by the adversaries.

Proof: The proof is provided in Appendix B. □

B. Communication and Computation Complexity

We next analyze the communication and computation com-
plexity of SCALR. For clarity, we let |Di| = D for all i ∈ [N],
to explicitly demonstrate the complexity with respect to the
number of users. The total communication and computation
complexity of SCALR is given in Table III.

Theorem 2: (Communication complexity) SCALR incurs a
per-user communication overhead of O(dD + dJ)) in the
online phase, and O(NdD

K +NdJ) in the offline phase.
Proof: Offline per-user overhead consists of: 1) O(NdD

K)
for dataset encoding, 2) O(Nd) for label secret sharing, 3)
O(Nd) for model initialization, 4) O(Nd) for model encoding
per training round, 5) O(Nd) for gradient computing and
model update per round. All communications are point-to-
point. Online per-user overhead includes: 1) O(dD) for dataset
encoding, 2) O(d) for label secret sharing, 3) O(d) for model
initialization, 4) O(d) for model encoding per round, 5) O(d)
for gradient computing and model update per round. All
communications are broadcast. □

Theorem 3: (Computation complexity) The per-user compu-
tation complexity of SCALR is given by O(NDd+ J ND

K (d+

r)+Jdr(K+T) log2 r(K+T) log log r(K+T)) for the online
phase, and O(N2d(D

K + J) log2(K + T) log log(K + T)) for
the offline phase.

Proof: (Offline) Interpolating a polynomial of degree κ
(and evaluating it at κ points) has a computational complexity
of O(κ log2 κ log log κ) [40]. Then, the per-user complexity of
the offline phase is: 1) O(NdD

K log2(K + T) log log(K+T))
to generate {R̃ij}j∈[N], 2) O(Nd log2 T log log T) to com-
pute the secret share {[ai]j}j∈[N], 3) O(Nd log2 T log log T)
to compute the secret share {[w(0)

i]j}j∈[N]; and O(Nd)
to compute [w(0)]i, 4) O(Nd log2(K + T) log log(K +
T)) to compute r̃(t)

ij ; O(Nd) to compute r̃(t)
i =∑

j∈[N] r̃
(t)
ji ; O(Nd log2 T log log T) for constructing the

secret shares {[r(t)
i]j}j∈[N]; O(Nd) to sum the secret shares

{[r(t)
j]i}j∈[N] (per training round), 5) O(Nd log2 T log log T)

to compute the secret share {[u(t)
i]j}j∈[N] (per training

round).
(Online) The per-user complexity of the online phase is:

1) O(Dd) for computing X̂i; O(NDd) for computing X̃i, 2)
O(Dd) for computing âi; O(Nd) for computing [XT y]i =∑

j∈[N](âj + [aj]i), 4) O(Td log2 T log log T) for computing
ŵ(t); O(Kd) for computing w̃i (per round), 5) O(ND

K (d +
r)) to compute X̃T

i ĝ(X̃i × w̃(t)
i); O(d) for computing ûi;

O(dr(K + T) log2 r(K + T) log log r(K + T)) for decoding
[f(Xk,w(t))]i; O(Kd) to compute [XT ĝ(X×w(t))]i; O(d)
to update the model (per round). □

C. Recovery Threshold

The recovery threshold is defined as the minimum number
of surviving users that are needed for correct recovery of the
final model. The recovery threshold of SCALR is N − S ≥
(2r+1)(K+T − 1)+1 (equal to COPML), as model update
requires local computations to be collected from at least |U2| ≥
(2r + 1)(K + T − 1) + 1 surviving users.

Remark 2: SCALR can also be applied to simpler linear
regression, following the same steps.

D. Relation to Secure Aggregation (SA)

Both SCALR and SA [19] leverage offline genera-
tion/encoding of random masks. The key difference is that,
in SA each user knows the true mask that hides their local
model/gradient, and learns the updated model (and the aggre-
gate of the gradients) after each training round, while in
SCALR the updated model should stay private throughout the
training, and the true masks that hide the model can not be
known by any user. The two frameworks provide different
benefits and trade-offs; SA can be applied to highly complex
training tasks, but as the intermediate model parameters are
revealed after each training iteration, privacy degrades as
the number of rounds increase [21], and can be breached
through multi-round privacy attacks [20]. In contrast, SCALR
reveals no intermediate model or gradient parameters dur-
ing training, preventing such privacy degradation throughout
training.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 17,2024 at 20:22:43 UTC from IEEE Xplore. Restrictions apply.

170 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 1, JANUARY 2024

TABLE III
TOTAL COMMUNICATION AND COMPUTATION COMPLEXITY (ACROSS ALL USERS) OF SCALR

E. Randomness Generation

We next present the volume of randomness generated per
user for SCALR. For dataset encoding (Stage 1), each user i ∈
[N] generates O(|Di|d(K+T)

K) random parameters. For label
secret sharing (Stage 2) and model initialization (Stage 3),
each user generates O(dT) random parameters. Then, at each
training round, each user generates O(dT) random parameters
for model encoding (Stage 4) and model update (Stage 5).
In comparison, the randomness generated per user for secure
aggregation [19] is O(d(N−S)

N−S−T) per training round.

VI. EXPERIMENTS

A. Setup

We consider logistic regression for binary classification on
two image datasets chosen in accordance with [5]: CIFAR-
10 [41] and GISETTE [42], which are of size (|D|, d) =
(9019, 3073) and (6000, 5000) respectively. The datasets are
distributed evenly across the users. We implement a multi-user
network where communication between the users are carried
out through a Message Passing Interface (MPI) using the
MPI4Py Python programming tool [43].

B. Benchmark

We evaluate the performance with respect to the state-of-
the-art multi-party logistic regression framework with end-to-
end information-theoretic privacy (beyond 3-4 users), which is
the COPML framework from [5]. We measure both the com-
munication volume, and the wall-clock training time, including
both communication and computation. The communication
volume includes all protocol stages. Note that the experi-
mental results in [5] do not include the one-time operations,
i.e., secret sharing the datasets and labels. As they are also
data-dependent, we include them here. For both frameworks,
we leverage the secure quantization operation to avoid overlap
errors during model updating, with (p1, p2) = (21, 24) [5].
We further optimize (speed-up) COPML using the grouping
strategy suggested in [5], which partitions users into groups
of size T + 1, and communicates secret shares only between
users within the same group.

C. Hyperparameters

To demonstrate the performance under the same experi-
mental settings with prior work, the average communication
bandwidth is set to 40Mbps, finite field size is set to q =
226 − 5, along with r = 1 and J = 50. [5].

D. Performance Evaluation

We first consider the scenario where the degree of privacy
(T) and parallelism (K) are (almost) equal, by letting N =

Fig. 2. Online communication volume (Fig. 2(a)-2(b) and wall-clock training
time (Fig. 2(c)-2(d)) for SCALR and COPML.

TABLE IV
COMMUNICATION AND COMPUTATION TIME (IN SECONDS)

PER USER FOR N=60

3(K + T − 1) + 1 with T = ⌊N−3
6 ⌋ and K = ⌊N+2

3 ⌋ −
T . In Figs. 2(a)-2(b), we compare the total communication
overhead during training (i.e., online communication over-
head) of SCALR with COPML (where all communication is
online). We observe that SCALR significantly decreases the
online communication overhead, by up to 80× and 70× on
the CIFAR-10 and GISETTE datasets, respectively. We also
note that the broadcast functionality of the MPI protocol
communicates messages through a tree topology. As such,
the communication overhead observed for SCALR scales with
respect to O(N logN). In an ideal broadcasting scenario (e.g.,
a cellular network), one can expect further gains (approach-
ing O(N)). We next compare the wall-clock online training
time (per user) of the two frameworks in Figs. 2(c)-2(d).
We observe that SCALR reduces the training time by up
to 6.0× and 5.8× on the CIFAR-10 and GISETTE datasets,
respectively. In Table IV we also present the wall-clock time
for communication and computation in the offline and online
phases per user, respectively.

E. Accuracy

We next demonstrate the model convergence for SCALR,
COPML, and conventional logistic regression (which

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 17,2024 at 20:22:43 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALR: COMMUNICATION-EFFICIENT SECURE MULTI-PARTY LOGISTIC REGRESSION 171

Fig. 3. Model convergence (Figs. 3(a)-3(b)), and online training time of
SCALR for varying K (Figs. 3(c)-3(d)) with N = 60.

represents the target accuracy, without any privacy constraints)
in Figs. 3(a)-3(b) for N = 60. We observe that SCALR
achieves comparable model accuracy to COPML and
conventional centralized logistic regression.

F. Varying the Parallelism Degree

One of the key system parameters is K (degree of par-
allelism), as the training load per user scales with respect
to 1/K. In Figs. 3(c)-3(d), we present the role of K on
the wall-clock training time, by fixing the number of users
to N = 60, and varying K. We observe that increasing
K decreases the training time, demonstrating the trade-off
between parallelism (accordingly, the training time) and adver-
sary resilience, as increasing K decreases the maximum
number of adversaries (i.e., T) that the protocol is resilient
against.

G. Varying the Degree of Polynomial Approximation for the
Sigmoid

In Figs. 3(a) and 3(b), we present the model accuracy for
SCALR with both r = 1 and r = 2, where we observe
that the two settings have comparable accuracy. To deter-
mine the range of r needed for more complex scenarios,
one approach is to let each user initially select a local
value that meets their minimum performance requirement on
their local dataset, and then agree on a common param-
eter r by selecting the maximum of the locally selected
parameters.

VII. CONCLUSION AND FUTURE WORK

In this work, we introduce SCALR, a fast and scalable
framework for logistic regression with end-to-end information-
theoretic privacy. SCALR builds on an offline-online commu-
nication trade-off, where the online communication overhead
is only linear in the number of users, and the offline communi-
cation is data-agnostic, and can take place anytime when the
network load is low. Our experiments demonstrate an order
of magnitude reduction in the communication overhead, while

achieving the same performance guarantees with the state-of-
the-art.

Future directions include extending our framework to com-
plex learning tasks, such as neural networks, by using poly-
nomial approximations for non-linear functions such as ReLU
and softmax. Different privacy trade-offs can be provided by
leveraging relaxed privacy notions, such as statistical secu-
rity [39], where the leakage probability is quantified by a
security parameter. Another interesting direction is to integrate
our framework with complementary differential privacy (DP)
techniques [22], [25], [27], to prevent potential information
leakage from the final model [44], [45], [46], [47], [48].
Interestingly, doing so can further improve the model accuracy
for DP in distributed settings [47], [48]. Another important
direction is reducing the computational load of decoding for
low-powered devices, by integrating our approach with gradi-
ent/model quantization, compression, and pruning. In doing
so, one can potentially reduce the dimensionality of the
gradients/model parameters, as well as the required field size
for computational efficiency.

APPENDIX A
SHAMIR’S SECRET SHARING PROTOCOL AND DEGREE

REDUCTION

Shamir’s T -out-of-N secret sharing [8] embeds a secret s
to a degree T polynomial f(ξ) = s + ξn1 + . . . + ξTnT ,
where {nk}k∈[T] ∈ Fq are generated uniformly random, and
sends a share [s]i ≜ f(αi) to each user i ∈ [N], where
{αi}i∈[N] are distinct parameters in Fq . The secret s can
be recovered from any collection of T + 1 shares, but any
collection of T or fewer shares reveals no information about
s. Shamir’s secret sharing supports addition and multiplication
operations.

Addition: To compute the sum s+ s′ of two secrets s and
s′, user i sums the secret shares:

[s]i + [s′]i = (s+ αin1 + . . .+ αT
i nT)

+ (s′ + αin
′
1 + . . .+ αT

i n
′
T) (35)

= (s+ s′) + αi(n1 + n′1) + . . .+ αT
i (nT + n′T)

= [s+ s′]i (36)

where the result [s + s′]i is a secret share of s + s′. This
operation requires no communication.

Multiplication-by-a-constant: To multiply s with a public
constant c, user i locally computes c[s]i = [cs]i, which results
in a secret share of cs.

Multiplication and degree reduction: For computing the
product ss′ of two secrets, user i initially multiplies the secret
shares gi ≜ [s]i × [s′]i = ss′ + . . .+ α2T

i (nTn
′
T), where the

resulting polynomial has degree 2T . As such, recovering xx′

with polynomial interpolation requires collecting the shares
from at least 2T + 1 users. Each successive multiplication
further increases the degree, hence the minimum number of
users required, necessitating a degree reduction step to avoid a
degree explosion [7]. Note that ss′ can be written as a linear
function of 2T+1 evaluation points, hence ss′ =

∑2T+1
i=1 λigi

for some {λi}i∈[2T+1]. To perform degree reduction, user i

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 17,2024 at 20:22:43 UTC from IEEE Xplore. Restrictions apply.

172 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 1, JANUARY 2024

then secret shares gi = [s]i[s′]i using Shamir’s T -out-of-
N secret sharing. After receiving {[gi]j}i∈[N], user j can
compute a new secret share [ss′]j =

∑2T+1
i=1 λi[gi]j =

[
∑2T+1

i=1 λigi]j of ss′, where the new share [ss′]j corresponds
to a polynomial of degree T (as opposed to 2T). On the other
hand, this has a quadratic communication complexity, which
is O(N2) over N users.

APPENDIX B
INFORMATION-THEORETIC PRIVACY

Proof: For tractability of the theoretical analysis, here
we consider a sufficiently large field size, and treat all model
updates as integer operations. This can be achieved by letting
η̄ ≜ |D|/η be an integer, and re-defining the local computation
from (27) performed by user i as,

f(X̃i, w̃
(t)
i) =

r∑
j=0

θj η̄
(r−j)ctX̃T

i (X̃i × w̃(t)
i)j (37)

where the operation (·)j stands for element-wise exponentia-
tion, and,

ct ≜

{
0 for t = 0

rct−1 + 1 for t ≥ 1 (38)

Equation (37) represents evaluations of a univariate poly-
nomial h(z) = f(ϕ(z), ψ(z)) such that, h(αi) =
f(ϕ(αi), ψ(αi)) = f(X̃i, w̃

(t)
i) and

h(βk) = f(ϕ(βk), ψ(βk)) = f(Xk,w(t))

=
r∑

j=0

θj η̄
(r−j)ctXT

k (Xk ×w(t))j ∀k ∈ [K]. (39)

After receiving ûi = f(X̃i, w̃
(t)
i) − ũi from (28), user

i computes (31) to obtain a secret share [f(X,w(t))]i ≜∑
k∈[K][f(Xk,w(t))]i of the true gradient f(X,w(t)) =∑
k∈[K] f(Xk,w(t)) =

∑
k∈[K] h(βk). Finally, the model

update operation from (33) can be re-defined as,

[w(t+1)]i =̄η(r−1)ct+1[w(t)]i − ([f(X,w(t))]i − η̄rct [XT y]i).
(40)

After J rounds, users can decode w(J) by collecting
{[w(J)]i}i∈[N], and recover the final model as w(J) ←
w(J)/η̄cJ . The correctness of this update process is presented
in Appendix C.

Privacy. We now proceed with the privacy analysis.
Consider an arbitrary set of adversaries T ⊆ N . For ease of
exposition, we focus on the worst case scenario |T | = T , while
the same analysis holds for all |T | < T . Let Mj

T denote the
messages collected by the adversaries in Stages j ∈ {1, 2, 3},
and Mj,t

T denote the messages received by the adversaries in
Stages j ∈ {4, 5} at training round t ∈ {0, . . . , J−1}, respec-
tively. Then, from the chain rule of mutual information [49],
one can rewrite the mutual information condition from (34) as
follows:

I({Di,Yi}i∈H;MT |{Di,Yi}i∈T ,w(J)) (41)

= I({Di,Yi}i∈H;M1
T ,M2

T ,M3
T ,∪t∈[J]M4,t

T ,∪t∈[J]M5,t
T |

{Di,Yi}i∈T ,w(J)) (42)

= I({Di,Yi}i∈H;M1
T |{Di,Yi}i∈T ,w(J))

+ I({Di,Yi}i∈H;M2
T |M1

T , {Di,Yi}i∈T ,w(J))

+ I({Di,Yi}i∈H;M3
T |M1

T ,M2
T , {Di,Yi}i∈T ,w(J))

+
J−1∑
t=0

I({Di,Yi}i∈H;M4,t
T |M

1
T ,M2

T ,M3
T ,

∪t−1
l=0 M

4,l
T ,∪

t−1
l=0M

5,l
T , {Di,Yi}i∈T ,w(J))

+
J−1∑
t=0

I({Di,Yi}i∈H;M5,t
T |M

1
T ,M2

T ,M3
T ,

∪t
l=0M

4,l
T ,∪

t−1
l=0M

5,l
T , {Di,Yi}i∈T ,w(J))

(43)

We next investigate each term in the summation (43).
Stage 1: Dataset Encoding. First, we start with the first

term in (43), which corresponds to the first stage, dataset
encoding of SCALR. This term can be written as:

I({Di,Yi}i∈H;M1
T |{Di,Yi}i∈T ,w(J)) (44)

= I({Di,Yi}i∈H; {R̃ij}j∈T
i∈H

, {Rik} i∈T
k∈[K]

,

{Vik} i∈T
k∈{K+1,...,K+T}

, {X̂ik} i∈[N]
k∈[K]

|{Di,Yi}i∈T ,w(J))

= H({R̃ij}j∈T
i∈H

, {Rik} i∈T
k∈[K]

, {Vik} i∈T
k∈{K+1,...,K+T}

,

{X̂ik} i∈[N]
k∈[K]

|{Di,Yi}i∈T ,w(J))

−H({R̃ij}j∈T
i∈H

, {Rik} i∈T
k∈[K]

, {Vik} i∈T
k∈{K+1,...,K+T}

,

{X̂ik} i∈[N]
k∈[K]

|{Di,Yi}i∈[N],w(J)) (45)

= H({R̃ij}j∈T
i∈H

, {Rik} i∈T
k∈[K]

, {Vik} i∈T
k∈{K+1,...,K+T}

,

{X̂ik} i∈H
k∈[K]

|{Di,Yi}i∈T ,w(J))

−H({R̃ij}j∈T
i∈H

, {Rik} i∈[N]
k∈[K]

, {Vik} i∈T
k∈{K+1,...,K+T}

)

(46)

≤ H({R̃ij}j∈T
i∈H

, {Rik} i∈T
k∈[K]

, {Vik} i∈T
k∈{K+1,...,K+T}

,

{X̂ik} i∈H
k∈[K]

)−H({R̃ij}j∈T
i∈H
|{Rik} i∈[N]

k∈[K]

,

{Vik} i∈T
k∈{K+1,...,K+T}

)−H({Vik} i∈T
k∈{K+1,...,K+T}

)

−H({Rik} i∈[N]
k∈[K]

) (47)

≤ d
(T
K

+ 1
)(∑

i∈[N]

|Di|
)

log q −
∑
i∈H

H({Zij}j∈T)

− Td

K
(
∑
i∈T
|Di|) log q − d(

∑
i∈[N]

|Di|) log q (48)

≤ 0 (49)

where (46) holds since given {Di,Yi}i∈[N], there is no uncer-
tainty in {Xik}i∈[N],k∈[K], and that the random matrices are
independent; (47) is from the chain rule of entropy, and the
fact that conditioning cannot increase entropy; (48) holds since
uniform distribution maximizes entropy, which is equal to

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 17,2024 at 20:22:43 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALR: COMMUNICATION-EFFICIENT SECURE MULTI-PARTY LOGISTIC REGRESSION 173

log |A| over an alphabet A [49]. In (48), we define Zij ≜∑K+T
k=K+1 Vik

∏
l∈[K+T]\{k}

αj−βl

βk−βl
for all i ∈ H, j ∈ T .

For simplicity, in the following we let T = [T] and H =
{T +1, . . . , N}, hence the first T users are adversarial, while
noting that the same analysis holds for any arbitrary set of
adversaries. Then, we let:

λjk ≜
∏

l∈[K+T]\{k}

αj − βl

βk − βl
(50)

for all j ∈ [N] and k ∈ [K + T], from which one can write,

(Zi1, . . . ,ZiT)

= (Vi,K+1, . . . ,Vi,K+T)

λ1,K+1 · · · λT,K+1

...
. . .

...
λ1,K+T · · · λT,K+T


︸ ︷︷ ︸

M

(51)

where M is a T×T MDS matrix, hence is invertible [1]. As a
result,

H({Zij}j∈T)=H(Zi1, . . . ,ZiT) = H(Vi,K+1, . . . ,Vi,K+T)

=
Td|Di|
K

log q (52)

where (52) follows from (51) and that M is an MDS matrix.
Finally, from (49) we observe:

0 ≤ I({Di,Yi}i∈H;M1
T |{Di,Yi}i∈T ,w(J)) ≤ 0 (53)

where the first inequality follows from the non-negativity of
mutual information. Therefore, the first term in (43) satisfies
I({Di,Yi}i∈H;M1

T |{Di,Yi}i∈T ,w(J)) = 0.
Stage 2: Label Secret Sharing. We next consider the

second term in (43), which corresponds to the secret sharing
of the labels. Denote the secret share of ai from user i to user
j as:

[ai]j ≜ ai +
∑

k∈[T]

γk
j bik (54)

where bik ∈ Fd×1
q are random vectors for k ∈ [T]. Coef-

ficients {γi}i∈[N] are distinct public parameters in Fq agreed
between the users. Then, the second term in (43) can be written
as:

I({Di,Yi}i∈H;M2
T |M1

T , {Di,Yi}i∈T ,w(J)) (55)
= I({Di,Yi}i∈H; {âi}i∈H, {[ai]j}i∈H

j∈T
, {ai}i∈T , {bik} i∈T

k∈[T]
|

M1
T , {Di,Yi}i∈T ,w(J)) (56)

≤ H({âi}i∈H, {[ai]j}i∈H
j∈T

, {ai}i∈T , {bik} i∈T
k∈[T]

)

−H({âi}i∈H, {[ai]j}i∈H
j∈T

, {ai}i∈T , {bik} i∈T
k∈[T]

|

M1
T , {Di,Yi}i∈[N],w(J)) (57)

where (57) holds since conditioning cannot increase entropy.
For the first term in (57),

H({âi}i∈H, {[ai]j}i∈H
j∈T

, {ai}i∈T , {bik} i∈T
k∈[T]

)

≤ ((T + 1)Nd) log q (58)

which follows from |H| = N − |T | with |T | = T . For the
second term in (57), we have:

H({âi}i∈H, {[ai]j}i∈H
j∈T

, {ai}i∈T , {bik} i∈T
k∈[T]

|

M1
T , {Di,Yi}i∈[N],w(J))

= H({[ai]j}i∈H
j∈T
|{ai}i∈H, {ai}i∈T , {bik} i∈T

k∈[T]
)

+H({ai}i∈H, {ai}i∈T , {bik} i∈T
k∈[T]

) (59)

= H
({ ∑

k∈[T]

γk
j bik

}
i∈H
j∈T

)
+ ((N − T)d+ Td+ T 2d) log q

(60)

=
∑
i∈H

H({sij}j∈T) + (Nd+ T 2d) log q (61)

where (59) is from the chain rule of entropy, and that given
{Di,Yi}i∈[N], the only uncertainty in âi is due to ai; (60)
is from the entropy of uniform random variables. In (61),
we define:

sij ≜
∑

k∈[T]

γk
j bik for all j ∈ T (62)

from which one can write,

(si1, . . . , siT) = (bi1, . . . ,biT)

γ1 · · · γT

...
. . .

...
γT
1 · · · γT

T


︸ ︷︷ ︸

A

(63)

where A is a T×T MDS matrix (invertible), which represents
a bijective mapping. Hence,

H({sij}j∈T) = H(si1, . . . , siT)
= H(bi1, . . . ,biT) = Td log q (64)

By combining (64) with (61), we have:

H({âi}i∈H, {[ai]j}i∈H
j∈T

, {ai}i∈T , {bik} i∈T
k∈[T]

|

M1
T , {Di,Yi}i∈[N],w(J)) = ((T + 1)Nd) log q (65)

Finally, by combining (65) and (58) with (57), we find that:

0 ≤ I({Di,Yi}i∈H;M2
T |M1

T , {Di,Yi}i∈T ,w(J))
≤ ((T + 1)Nd) log q − ((T + 1)Nd) log q ≤ 0 (66)

where the first inequality follows from the non-negativity
of mutual information. Hence, the second term in (43) also
satisfies I({Di,Yi}i∈H;M2

T |M1
T , {Di,Yi}i∈T ,w(J)) = 0.

Stage 3: Model Initialization. We now consider the
third term in (43), which corresponds to model initialization.
We denote the secret share [w(0)

i]j sent from user i to user j
as:

[w(0)
i]j ≜ w(0)

i +
∑

k∈[T]

γk
j z(0)

ik (67)

where {z(0)
ik }k∈[T] are uniformly random vectors of size d,

and {γj}j∈[N] are as defined in (54). We can then rewrite the
mutual information condition from the third term in (43) as

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 17,2024 at 20:22:43 UTC from IEEE Xplore. Restrictions apply.

174 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 1, JANUARY 2024

follows:

I({Di,Yi}i∈H;M3
T |M1

T ,M2
T , {Di,Yi}i∈T ,w(J))

= I({Di,Yi}i∈H; {[w(0)
i]j}i∈H,j∈T , {w(0)

i , zik}i∈T ,k∈[T]|

M1
T ,M2

T , {Di,Yi}i∈T ,w(J))
(68)

= I({Di,Yi}i∈H; {w(0)
i , zik}i∈T ,k∈[T]|

M1
T ,M2

T , {Di,Yi}i∈T ,w(J))

+ I({Di,Yi}i∈H; {[w(0)
i]j}i∈H,j∈T |{w(0)

i , zik}i∈T ,k∈[T],

M1
T ,M2

T , {Di,Yi}i∈T ,w(J))
(69)

= H({w(0)
i , zik}i∈T ,k∈[T]|M1

T ,M2
T , {Di,Yi}i∈T ,w(J))

−H({w(0)
i , zik}i∈T ,k∈[T]|M1

T ,M2
T , {Di,Yi}i∈[N],w(J))

+H({[w(0)
i]j}i∈H,j∈T |{w(0)

i , zik}i∈T ,k∈[T],

M1
T ,M2

T , {Di,Yi}i∈T ,w(J))

−H({[w(0)
i]j}i∈H,j∈T |{w(0)

i , zik}i∈T ,k∈[T],

M1
T ,M2

T , {Di,Yi}i∈[N],w(J)) (70)

We next consider each term in (70) separately. For the first
term in (70), we have that,

H({w(0)
i , zik}i∈T ,k∈[T]|M1

T ,M2
T , {Di,Yi}i∈T ,w(J))

≤ H({w(0)
i , zik}i∈T ,k∈[T]) (71)

≤ (dT + dT 2) log q (72)

which holds since uniform distribution maximizes entropy. For
the second term in (70), we have,

H({w(0)
i , zik}i∈T ,k∈[T]|M1

T ,M2
T , {Di,Yi}i∈[N],w(J))

≥ H({w(0)
i , zik}i∈T ,k∈[T]|w(0)) (73)

= H({w(0)
i , zik}i∈T ,k∈[T]) (74)

= (dT + dT 2) log q (75)

where (73) follows from the data processing inequality, since
{w(0)

i , zik}i∈T ,k∈[T]−w(0)−w(J),M1
T ,M2

T , {Di,Yi}i∈[N]

forms a Markov chain, and (74) holds since,

H({w(0)
i , zik}i∈T ,k∈[T])−H({w(0)

i , zik}i∈T ,k∈[T]|w(0))
(76)

= I({w(0)
i , zik}i∈T ,k∈[T];w(0)) (77)

= H(w(0))−H(w(0)|{w(0)
i , zik}i∈T ,k∈[T])

= d log q − d log q = 0 (78)

where (78) holds since w(0)
i are uniformly random for all i ∈

[N]. For the third term in (70),

H({[w(0)
i]j}i∈H,j∈T |{w(0)

i , zik}i∈T ,k∈[T],

M1
T ,M2

T , {Di,Yi}i∈T ,w(J))

≤ H({[w(0)
i]j}i∈H,j∈T)

≤ (N − T)T log q (79)

Finally, for the last term in (70), we rewrite the condition from
(67) as follows:

([w(0)
i]1, . . . , [w

(0)
i]T) = w(0)

i (1, . . . , 1)︸ ︷︷ ︸
1

+ (z(0)
i1 , . . . , z

(0)
iT)︸ ︷︷ ︸

z
(0)
i

A

= w(0)
i 1 + z(0)

i A (80)

where A is an T × T MDS matrix as defined in (63). Then,
the last term in (70) becomes:

H({[w(0)
i]j}i∈H,j∈T |{w(0)

i , zik}i∈T ,k∈[T],M1
T ,M2

T ,

{Di,Yi}i∈[N],w(J))

≥ H({[w(0)
i]j}i∈H,j∈T |{w(0)

i , zik}i∈T ,k∈[T],M1
T ,M2

T ,

{Di,Yi}i∈[N],w(J), {w(0)
i }i∈H) (81)

= H({w(0)
i 1 + z(0)

i A}i∈H|{w(0)
i , zik}i∈T ,k∈[T],M1

T ,M2
T ,

{Di,Yi}i∈[N],w(J), {w(0)
i }i∈H)

= H({z(0)
i }i∈H) (82)

= (N − T)Td log q (83)

where (82) holds since A is an MDS matrix, hence is
invertible, and that random vectors generated by the honest
users are independent from the random vectors generated by
adversarial users, and (83) holds since z(0)

i are generated
uniformly random for all i ∈ [N].

Finally, by combining (72), (75), (79), (83) with (70),
we have for the third term in (43):

0 ≤ I({Di,Yi}i∈H;M3
T |M1

T ,M2
T , {Di,Yi}i∈T ,w(J))

(84)

≤ (dT + dT 2) log q − (dT + dT 2) log q
+ (N − T)Td log q − (N − T)Td log q = 0

(85)

Stage 4: Model Encoding. We next consider the fourth term
in (43), which corresponds to model encoding (Stage 4) of
SCALR. We represent the secret share of r(t)

i at user j ∈ [N]
as:

[r(t)
i]j = r(t)

i +
∑

k∈[T]

γk
j g(t)

ik for all i ∈ [N], (86)

where g(t)
ik ∈ Fd

q are uniformly random vectors, and γj for
j ∈ [N] are as given in (54). Without loss of generality,
we represent the secret share of the model w(t) at user i ∈ [N]
as:

[w(t)]i = w(t) +
∑

k∈[T]

γk
i z(t)

k for all i ∈ [N], (87)

where z(t)
k ∈ Fd

q , and {γi}i∈[N] are defined in (54). Then, for
the third term in (43), we observe,

I({Di,Yi}i∈H;M4,t
T |M

1
T ,M2

T ,M3
T ,

∪t−1
l=0 M

4,l
T ,∪

t−1
l=0M

5,l
T , {Di,Yi}i∈T ,w(J))

= I({Di,Yi}i∈H; {[r(t)
i]j , r̃

(t)
ij }i∈H

j∈T
, {r(t)

i }i∈T , {g
(t)
ik } i∈T

k∈[T]
,

{v(t)
ik } i∈T

k∈{K+1,...,K+T}
, {[ŵ(t)]i}i∈[N]|M1

T ,M2
T ,M3

T ,

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 17,2024 at 20:22:43 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALR: COMMUNICATION-EFFICIENT SECURE MULTI-PARTY LOGISTIC REGRESSION 175

∪t−1
l=0 M

4,l
T ,∪

t−1
l=0M

5,l
T , {Di,Yi}i∈T ,w(J)) (88)

= H({[r(t)
i]j , r̃

(t)
ij }i∈H

j∈T
, {r(t)

i }i∈T , {g
(t)
ik } i∈T

k∈[T]
,

{v(t)
ik } i∈T

k∈{K+1,...,K+T}
, {[ŵ(t)]i}i∈[N]|M1

T ,M2
T ,M3

T ,

∪t−1
l=0 M

4,l
T ,∪

t−1
l=0M

5,l
T , {Di,Yi}i∈T ,w(J))

−H({[r(t)
i]j , r̃

(t)
ij }i∈H

j∈T
, {r(t)

i }i∈T , {g
(t)
ik } i∈T

k∈[T]
,

{v(t)
ik } i∈T

k∈{K+1,...,K+T}
, {[ŵ(t)]i}i∈[N]|M1

T ,M2
T ,M3

T ,

∪t−1
l=0 M

4,l
T ,∪

t−1
l=0M

5,l
T , {Di,Yi}i∈[N],w(J)) (89)

= H({[r(t)
i]j , r̃

(t)
ij }i∈H

j∈T
, {r(t)

i }i∈T , {g
(t)
ik } i∈T

k∈[T]

,

{v(t)
ik } i∈T

k∈{K+1,...,K+T}
,w(t) −

∑
j∈[N]

r(t)
j ,

{z(t)
k −

∑
j∈[N]

g(t)
jk }k∈[T]|M1

T ,M2
T ,M3

T ,

∪t−1
l=0 M

4,l
T ,∪

t−1
l=0M

5,l
T , {Di,Yi}i∈T ,w(J))

−H({[r(t)
i]j , r̃

(t)
ij }i∈H

j∈T
, {r(t)

i }i∈T , {g
(t)
ik } i∈T

k∈[T]
,

{v(t)
ik } i∈T

k∈{K+1,...,K+T}
,w(t) −

∑
j∈[N]

r(t)
j ,

{z(t)
k −

∑
j∈[N]

g(t)
jk }k∈[T]|M1

T ,M2
T ,M3

T ,

∪t−1
l=0 M

4,l
T ,∪

t−1
l=0M

5,l
T , {Di,Yi}i∈[N],w(J)) (90)

= H({[r(t)
i]j , r̃

(t)
ij }i∈H

j∈T
, {r(t)

i }i∈T , {g
(t)
ik } i∈T

k∈[T]
,

{v(t)
ik } i∈T

k∈{K+1,...,K+T}
,w(t) −

∑
j∈H

r(t)
j ,

{z(t)
k −

∑
j∈H

g(t)
jk }k∈[T]|M1

T ,M2
T ,M3

T ,

∪t−1
l=0 M

4,l
T ,∪

t−1
l=0M

5,l
T , {Di,Yi}i∈T ,w(J))

−H({[r(t)
i]j , r̃

(t)
ij }i∈H

j∈T
, {r(t)

i }i∈T , {g
(t)
ik } i∈T

k∈[T]
,

{v(t)
ik } i∈T

k∈{K+1,...,K+T}
,w(t) −

∑
j∈H

r(t)
j ,

{z(t)
k −

∑
j∈H

g(t)
jk }k∈[T]|M1

T ,M2
T ,M3

T ,

∪t−1
l=0 M

4,l
T ,∪

t−1
l=0M

5,l
T , {Di,Yi}i∈[N],w(J)) (91)

where (90) holds since, from (87) and (20), one can write,

[ŵ(t)]i = [w(t)]i − [r(t)]i

=
(
w(t) −

∑
j∈[N]

r(t)
j

)
+

∑
k∈[T]

γk
i

(
z(t)

k −
∑

j∈[N]

g(t)
jk

)
(92)

which is a polynomial of degree T . Since the coefficients of
any degree T polynomial can be uniquely determined from
T + 1 evaluation points, there is a bijective (one-to-one)
mapping from any sequence of T + 1 coefficients (w(t) −∑

j∈[N] r
(t)
j , z(t)

1 −
∑

j∈[N] g
(t)
j1 , . . . , z

(t)
T −

∑
j∈[N] g

(t)
jT) to a

valid {[ŵ(t)]i}i∈[N]. We next define a few variables to simplify
the analysis of (91),

([w(t)]1, . . . , [w(t)]T) = w(t) (1, . . . , 1)︸ ︷︷ ︸
1

+ (z(t)
1 , . . . , z(t)

T)︸ ︷︷ ︸
z(t)

A

= w(t)1 + z(t)A (93)

where A is an MDS matrix as defined in (63). Similarly,
we let:

([r(t)
i]1, . . . , [r

(t)
i]T) = r(t)

i (1, . . . , 1)︸ ︷︷ ︸
1

+ (g(t)
i1 , . . . ,g

(t)
iT)︸ ︷︷ ︸

g
(t)
i

A

= r(t)
i 1 + g(t)

i A (94)

Finally, by using the coefficients defined in (50), we can write:

(r̃(t)
i1 , . . . , r̃

(t)
iT) = r(t)

i

K∑
k=1

(λk1, . . . , λkT)︸ ︷︷ ︸
λ

+ (v(t)
i(K+1), . . . ,v

(t)
i(K+T))︸ ︷︷ ︸

v
(t)
i

M = r(t)
i λ+ v(t)

i M (95)

where M is as defined in (51). From (93)-(95), chain rule
of entropy, and the independence of the random vectors
generated, the second term in (91) can be rewritten as:

H({r(t)
i }i∈T , {g

(t)
ik } i∈T

k∈[T]
, {v(t)

ik } i∈T
k∈{K+1,...,K+T}

)

+H({[r(t)
i]j , r̃

(t)
ij }i∈H

j∈T
,w(t) −

∑
j∈H

r(t)
j ,

{z(t)
k −

∑
j∈H

g(t)
jk }k∈[T]|M1

T ,M2
T ,M3

T ,

∪t−1
l=0 M

4,l
T ,∪

t−1
l=0M

5,l
T , {Di,Yi}i∈[N],w(J)) (96)

= dT (2T + 1) log q +H({[r(t)
i]j , r̃

(t)
ij }i∈H

j∈T
,w(t) −

∑
j∈H

r(t)
j ,

{z(t)
k −

∑
j∈H

g(t)
jk }k∈[T]|M1

T ,M2
T ,M3

T ,

∪t−1
l=0 M

4,l
T ,∪

t−1
l=0M

5,l
T , {Di,Yi}i∈[N],w(J)) (97)

= dT (2T + 1) log q +H({r(t)
i 1 + g(t)

i A}i∈H,

{r(t)
i λ+ v(t)

i M}i∈H,w(t) −
∑
i∈H

r(t)
i , z(t) −

∑
i∈H

g(t)
i |M

1
T ,

M2
T ,M3

T ,∪t−1
l=0M

4,l
T ,∪

t−1
l=0M

5,l
T , {Di,Yi}i∈[N],w(J))

(98)

≥ dT (2T + 1) log q +H({r(t)
i 1 + g(t)

i A}i∈H,

{r(t)
i λ+ v(t)

i M}i∈H,w(t) −
∑
i∈H

r(t)
i , z(t) −

∑
i∈H

g(t)
i |

M1
T ,M2

T ,M3
T ,∪t−1

l=0M
4,l
T ,∪

t−1
l=0M

5,l
T ,

{Di,Yi}i∈[N],w(J),w(t), z(t)) (99)

= dT (2T + 1) log q +H({r(t)
i 1 + g(t)

i A}i∈H,

{r(t)
i λ+ v(t)

i M}i∈H,
∑
i∈H

r(t)
i ,

∑
i∈H

g(t)
i |M

1
T ,M2

T ,M3
T ,

∪t−1
l=0 M

4,l
T ,∪

t−1
l=0M

5,l
T , {Di,Yi}i∈[N],w(J)) (100)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 17,2024 at 20:22:43 UTC from IEEE Xplore. Restrictions apply.

176 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 1, JANUARY 2024

= dT (2T + 1) log q +H({r(t)
i 1 + g(t)

i A}i∈H,

{r(t)
i λ+ v(t)

i M}i∈H,
∑
i∈H

r(t)
i ,

∑
i∈H

g(t)
i) (101)

= dT (2T + 1) log q +H({r(t)
i λ+ v(t)

i M}i∈H|

{r(t)
i 1 + g(t)

i A}i∈H,
∑
i∈H

r(t)
i ,

∑
i∈H

g(t)
i)

+H({r(t)
i 1 + g(t)

i A}i∈H,
∑
i∈H

r(t)
i ,

∑
i∈H

g(t)
i)

(102)

≥ dT (2T + 1) log q +H({r(t)
i λ+ v(t)

i M}i∈H|

{r(t)
i 1 + g(t)

i A}i∈H,
∑
i∈H

r(t)
i ,

∑
i∈H

g(t)
i , {r(t)

i }i∈H)

+H({r(t)
i 1 + g(t)

i A}i∈H,
∑
i∈H

r(t)
i ,

∑
i∈H

g(t)
i)

(103)

= dT (2T + 1) log q +H({v(t)
i }i∈H)

+H({r(t)
i 1 + g(t)

i A}i∈H,
∑
i∈H

r(t)
i ,

∑
i∈H

g(t)
i)

(104)
= dT (2T + 1) log q + (N − T)dT log q

+H({r(t)
i 1 + g(t)

i A}i∈H,
∑
i∈H

r(t)
i ,

∑
i∈H

g(t)
i)

(105)
≥ (T + 2TN + 1)d log q (106)

where (99) and (103) holds since conditioning cannot increase
entropy, (101) and (104) holds from the independence of
random vectors, and that M is an MDS matrix (invertible);
(105) follows from the entropy of uniform random variables.
Finally, (106) follows from,

H({r(t)
i 1 + g(t)

i A}i∈H,
∑
i∈H

r(t)
i ,

∑
i∈H

g(t)
i)

= H(
∑
i∈H

g(t)
i |{r

(t)
i 1 + g(t)

i A}i∈H,
∑
i∈H

r(t)
i)

+H({r(t)
i 1 + g(t)

i A}i∈H,
∑
i∈H

r(t)
i) (107)

= H({r(t)
i 1 + g(t)

i A}i∈H,
∑
i∈H

r(t)
i) (108)

≥ H({r(t)
i 1 + g(t)

i A}i∈H|
∑
i∈H

r(t)
i , {r(t)

i }i∈H)

+H(
∑
i∈H

r(t)
i) (109)

= (N − T)Td log q + d log q (110)

where (108) is from
∑

i∈H g(t)
i = (

∑
i∈H(r(t)

i 1 + g(t)
i A) −∑

i∈H r(t)
i 1)A−1; (110) holds since A is an MDS matrix.

We next analyze the first term in (91). For this term, we have
that:

H({[r(t)
i]j , r̃

(t)
ij }i∈H

j∈T
, {r(t)

i }i∈T , {g
(t)
ik } i∈T

k∈[T]
,

{v(t)
ik } i∈T

k∈{K+1,...,K+T}
,w(t) −

∑
j∈H

r(t)
j , {z(t)

k −
∑
j∈H

g(t)
jk }k∈[T]|

M1
T ,M2

T ,M3
T ,∪t−1

l=0M
4,l
T ,∪

t−1
l=0M

5,l
T , {Di,Yi}i∈T ,w(J))

(111)

≤ H({r(t)
i 1 + g(t)

i A}i∈H, {r(t)
i λ+ v(t)

i A}i∈H,
{r(t)

i }i∈T , {g
(t)
ik } i∈T

k∈[T]
, {v(t)

ik } i∈T
k∈{K+1,...,K+T}

,

w(t) −
∑
i∈H

r(t)
i , z(t) −

∑
i∈H

g(t)
i) (112)

= H({r(t)
i 1 + g(t)

i A}i∈H, {r(t)
i λ+ v(t)

i A}i∈H, {r(t)
i }i∈T ,

{g(t)
ik } i∈T

k∈[T]
, {v(t)

ik } i∈T
k∈{K+1,...,K+T}

,w(t) −
∑
i∈H

r(t)
i)

(113)
≤ (T + 2TN + 1)d log q (114)

where (112) holds since conditioning cannot increase entropy,
and (113) holds since:

z(t) −
∑
i∈H

g(t)
i =

(
(w(t)1 + z(t)A)

− (w(t) −
∑
i∈H

r(t)
i)1−

∑
i∈H

(r(t)
i 1 + g(t)

i A)
)
A−1

(115)

and (114) holds since entropy is maximized by the uniform
distribution. Finally, by combining (106) and (114) with (91)
and (89), we find for the fourth term in (43) that:

0 ≤ I({Di,Yi}i∈H;M4,t
T |M

1
T ,M2

T ,M3
T ,

∪t−1
l=0 M

4,l
T ,∪

t−1
l=0M

5,l
T , {Di,Yi}i∈T ,w(J))

≤ (T + 2TN + 1)d log q − (T + 2TN + 1)d log q = 0
(116)

Stage 5: Gradient Computing and Model Update. We next
consider the last term in (43), which corresponds to Stage 5 of
the proposed framework, i.e., local gradient computation and
model update. Without loss of generality, we denote the secret
share of u(t)

i at user j ∈ [N] as:

[u(t)
i]j ≜ u(t)

i +
∑

k∈[T]

γk
j n(t)

ik for all i ∈ [N], (117)

where u(t)
ik ∈ Fd

q are uniformly random vectors for all i ∈
[N], k ∈ [T], and γj is as defined in (54). Similar to (95),
we also represent (117) in matrix notation as:

([u(t)
i]1, . . . , [u

(t)
i]T) = u(t)

i (1, . . . , 1)︸ ︷︷ ︸
1

+ (ni1, . . . ,niT)︸ ︷︷ ︸
n

(t)
i

A

= u(t)
i 1 + n(t)

i A (118)

where A is a T × T MDS matrix as given in (63). Then, the
last term in (43) can be written as:

I({Di,Yi}i∈H;M5,t
T |M

1
T ,M2

T ,M3
T ,

∪t
l=0M

4,l
T ,∪

t−1
l=0M

5,l
T , {Di,Yi}i∈T ,w(J))

= I({Di,Yi}i∈H; {[u(t)
i]j}i∈H

j∈T
, {û(t)

i }i∈[N], {u
(t)
i }i∈T ,

{n(t)
ik } i∈T

k∈[T]
|M, {Di,Yi}i∈T) (119)

≤ H({[u(t)
i]j}i∈H

j∈T
, {û(t)

i }i∈[N], {u
(t)
i }i∈T ,

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 17,2024 at 20:22:43 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALR: COMMUNICATION-EFFICIENT SECURE MULTI-PARTY LOGISTIC REGRESSION 177

{n(t)
ik } i∈T

k∈[T]
|M, {Di,Yi}i∈T)

−H({[u(t)
i]j}i∈H

j∈T
, {û(t)

i }i∈[N], {u
(t)
i }i∈T ,

{n(t)
ik } i∈T

k∈[T]
|M, {Di,Yi}i∈[N], {X̃T

i ĝ(X̃i, w̃
(t)
i)}i∈[N])

≤ H({[u(t)
i]j}i∈H

j∈T
, {X̃T

i ĝ(X̃i, w̃
(t)
i)− u(t)

i }i∈H, {u
(t)
i }i∈T ,

{n(t)
ik } i∈T

k∈[T]
)−H({n(t)

i A}i∈H, {u(t)
i }i∈[N], {n

(t)
ik } i∈T

k∈[T]
)

(120)
≤ N(T + 1)d log q −N(T + 1)d log q (121)
= 0 (122)

where M ≜ {M1
T ,M2

T ,M3
T ,∪t

l=0M
4,l
T ,∪

t−1
l=0M

5,l
T ,w

(J)};
(121) holds since random vectors are generated independently,
A is an MDS matrix (invertible), conditioning cannot increase
entropy, and that given M1

T ,M
4,l
T , there is no uncertainty in

{X̃T
i ĝ(X̃i, w̃

(t)
i)}i∈T .

Combining Stages 1-5. Finally, by combining
(53), (66), (116), and (122) with (43), we have
I({Di,Yi}i∈H;MT |{Di,Yi}i∈T ,w(J)) = 0, which
completes the proof. □

APPENDIX C
CORRECTNESS

The correctness of Lagrange coding and Shamir’s secret
sharing follows from [1] and [8]. We next show that the model
update operations from (40) correctly recover the target model
in (26). From (40), at the end of each round t, client i holds
a secret share [w(t+1)]i of w(t+1), where

w(t+1) = η̄(r−1)ct+1w(t) − (f(X,w(t))− η̄rctXT y).
(123)

Next, define w(t) as the target model from (26), where w(0) ≜
w(0),

w(t+1) ≜ w(t) − 1
η̄
XT (ĝ(X×w(t))− y)

for t ∈ {0, . . . , J − 1}, (124)

and show that the model updates from (40) satisfy w(t)

η̄ct
= w(t)

for all training rounds t ≥ 0. The proof follows by induction,
from the following two steps: 1) Base case: For the base case
t = 0, the result follows directly from (40) and that c0 ≜ 0,
2) Induction step: Next, assume that w(t)

η̄ct
= w(t) holds for an

arbitrary round t, and show that it also holds for round t+ 1,

w(t+1)

= η̄(r−1)ct+1w(t) − (f(X,w(t))− η̄rctXT y) (125)

= η̄(r−1)ct+1η̄ctw(t) − (f(X, η̄ctw(t))− η̄rctXT y) (126)

= η̄rct+1w(t) − (XT
r∑

j=0

η̄(r−j)ctθj(X× η̄ctw(t))j

− η̄rctXT y) (127)

= η̄rct+1w(t) − η̄rct(XT
r∑

j=0

θj(X×w(t))j −XT y)

(128)

= η̄rct+1
(
w(t) − 1

η̄
(XT ĝ(X×w(t))−XT y)

)
= η̄ct+1w(t+1) (129)

where (126) holds since w(t) = η̄ctw(t) for round t holds by
assumption, (129) follows from (124) and that ct+1 = rct +1,
which completes the proof.

REFERENCES

[1] Q. Yu et al., “Lagrange coded computing: Optimal design for resiliency,
security, and privacy,” in Proc. Int. Conf. Artif. Intell. Statist. (AISTATS),
2019, pp. 1–11.

[2] J. So, B. Güler, and A. S. Avestimehr, “CodedPrivateML: A fast and
privacy-preserving framework for distributed machine learning,” IEEE
J. Sel. Areas Inf. Theory, vol. 2, no. 1, pp. 441–451, Mar. 2021.

[3] J. So, B. Güler, and A. S. Avestimehr, “Byzantine-resilient secure
federated learning,” IEEE J. Sel. Areas Commun., vol. 39, no. 7,
pp. 2168–2181, Jul. 2021.

[4] J. So, B. Güler, and A. S. Avestimehr, “Turbo-aggregate: Breaking the
quadratic aggregation barrier in secure federated learning,” IEEE J. Sel.
Areas Inf. Theory, vol. 2, no. 1, pp. 479–489, Mar. 2021.

[5] J. So, B. Güler, and A. S. Avestimehr, “A scalable approach for privacy-
preserving collaborative machine learning,” in Proc. Annu. Conf. Neural
Inf. Process. Syst. (NeurIPS), Dec. 2020, pp. 1–13.

[6] A. C. Yao, “Protocols for secure computations,” in Proc. 23rd Annu.
Symp. Found. Comput. Sci., Nov. 1982, pp. 160–164.

[7] M. Ben-Or and A. Wigderson, “Completeness theorems for non-
cryptographic fault-tolerant distributed computation,” in Proc. 20th
Annu. ACM Symp. Theory Comput., 1988, pp. 1–10.

[8] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612–613, Nov. 1979.

[9] I. Damgård and J. B. Nielsen, “Scalable and unconditionally secure
multiparty computation,” in Proc. Annu. Int. Cryptol. Conf. Cham,
Switzerland: Springer, 2007, pp. 572–590.

[10] Z. Beerliová-Trubìniová and M. Hirt, “Perfectly-secure MPC with linear
communication complexity,” in Proc. Theory Cryptography Conf. Cham,
Switzerland: Springer, 2008, pp. 213–230.

[11] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and N.
Taft, “Privacy-preserving ridge regression on hundreds of millions of
records,” in Proc. IEEE Symp. Secur. Privacy, May 2013, pp. 334–348.

[12] A. Gascón et al., “Privacy-preserving distributed linear regression on
high-dimensional data,” Proc. Privacy Enhancing Technol., vol. 2017,
no. 4, pp. 345–364, Oct. 2017.

[13] P. Mohassel and Y. Zhang, “SecureML: A system for scalable privacy-
preserving machine learning,” in Proc. IEEE Symp. Secur. Privacy (SP),
May 2017, pp. 19–38.

[14] P. Mohassel and P. Rindal, “ABY 3: A mixed protocol framework for
machine learning,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Oct. 2018, pp. 35–52.

[15] S. Wagh, D. Gupta, and N. Chandran, “SecureNN: 3-party secure
computation for neural network training,” Proc. Privacy Enhancing
Technol., vol. 2019, no. 3, pp. 26–49, Jul. 2019.

[16] K. Bonawitz et al., “Practical secure aggregation for privacy-preserving
machine learning,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Oct. 2017, pp. 1–14.

[17] J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and M. Raykova,
“Secure single-server aggregation with (poly) logarithmic overhead,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2020,
pp. 1–10.

[18] Y. Zhao and H. Sun, “Information theoretic secure aggregation with
user dropouts,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2021,
pp. 1124–1129.

[19] J. So et al., “LightSecAgg: A lightweight and versatile design for secure
aggregation in federated learning,” in Proc. Mach. Learn. Syst., vol. 4,
2022, pp. 1–27.

[20] J. So, R. E. Ali, B. Guler, J. Jiao, and S. Avestimehr, “Securing
secure aggregation: Mitigating multi-round privacy leakage in federated
learning,” in Proc. AAAI Conf. Artif. Intell., 2023, pp. 1–9.

[21] A. R. Elkordy, J. Zhang, Y. H. Ezzeldin, K. Psounis, and S. Avestimehr,
“How much privacy does federated learning with secure aggregation
guarantee?” in Proc. Priv. Enhancing Technol. (PETS), 2023, pp. 1–16.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 17,2024 at 20:22:43 UTC from IEEE Xplore. Restrictions apply.

178 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 1, JANUARY 2024

[22] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to
sensitivity in private data analysis,” in Proc. Theory Cryptography Conf.
Cham, Switzerland: Springer, 2006, pp. 265–284.

[23] K. Chaudhuri and C. Monteleoni, “Privacy-preserving logistic regres-
sion,” in Proc. Adv. Neural Inf. Proc. Sys., 2009, pp. 1–8.

[24] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in
Proc. 53rd Annu. Allerton Conf. Commun., Control, Comput. (Allerton),
Sep. 2015, pp. 1310–1321.

[25] M. Abadi et al., “Deep learning with differential privacy,” in Proc. ACM
SIGSAC Conf. Comp. Commun. Secur., 2016, pp. 308–318.

[26] M. Pathak, S. Rane, and B. Raj, “Multiparty differential privacy via
aggregation of locally trained classifiers,” in Proc. Adv. Neural Inf.
Process. Syst., 2010, pp. 1876–1884.

[27] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang, “Learning
differentially private recurrent language models,” in Proc. Int. Conf.
Learn. Represent., 2018, pp. 1–14.

[28] A. Rajkumar and S. Agarwal, “A differentially private stochastic gradient
descent algorithm for multiparty classification,” in Proc. Int. Conf. Artif.
Intell. Statist. (AISTATS), 2012, pp. 933–941.

[29] B. Jayaraman, L. Wang, D. Evans, and Q. Gu, “Distributed learning
without distress: Privacy-preserving empirical risk minimization,” in
Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 6346–6357.

[30] C. Gentry and D. Boneh, A Fully Homomorphic Encryption Scheme,
vol. 20, no. 9. Stanford, CA, USA: Stanford University, 2009.

[31] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc.
41st Annu. ACM Symp. Theory Comput., May 2009, pp. 169–178.

[32] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy,” in Proc. Int. Conf. Mach. Learn.,
2016, pp. 201–210.

[33] T. Graepel, K. Lauter, and M. Naehrig, “ML confidential: Machine
learning on encrypted data,” in Proc. Int. Conf. Inf. Secur. Cryptol.
Cham, Switzerland: Springer, 2012, pp. 1–21.

[34] J. Yuan and S. Yu, “Privacy preserving back-propagation neural network
learning made practical with cloud computing,” IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 1, pp. 212–221, Jan. 2014.

[35] P. Li, J. Li, Z. Huang, C.-Z. Gao, W.-B. Chen, and K. Chen, “Privacy-
preserving outsourced classification in cloud computing,” Cluster Com-
put., vol. 21, pp. 277–286, Apr. 2017.

[36] Q. Wang et al., “Privacy-preserving collaborative model learning: The
case of word vector training,” IEEE Trans. Knowl. Data Eng., vol. 30,
no. 12, pp. 2381–2393, Dec. 2018.

[37] K. Han, S. Hong, J. H. Cheon, and D. Park, “Logistic regression on
homomorphic encrypted data at scale,” in Proc. Annu. Conf. Innovative
App. Artif. Intell. (IAAI), 2019, pp. 1–6.

[38] J. Brinkhuis and V. Tikhomirov, Optimization: Insights and Applications.
Princeton, NJ, USA: Princeton Univ. Press, 2005.

[39] O. Catrina and A. Saxena, “Secure computation with fixed-point num-
bers,” in Proc. Int. Conf. Financial Cryptogr. Data Secur. Cham,
Switzerland: Springer, 2010, pp. 35–50.

[40] K. S. Kedlaya and C. Umans, “Fast polynomial factorization and
modular composition,” SIAM J. Comput., vol. 40, no. 6, pp. 1767–1802,
Jan. 2011.

[41] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” M.S. thesis, Dept. Comput. Sci., Univ. Toronto, 2009.

[42] I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror, “Result analysis of
the NIPS 2003 feature selection challenge,” in Proc. Conf. Neural Inf.
Process. Syst. (NeurIPS), vol. 17, 2004, pp. 1–8.

[43] L. Dalcín, R. Paz, and M. Storti, “MPI for Python,” J. Parallel Distrib.
Comput., vol. 65, no. 9, pp. 1108–1115, Sep. 2005.

[44] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,” in
Proc. 22nd ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2015,
pp. 1–12.

[45] L. Zhu and S. Han, “Deep leakage from gradients,” in Federated
Learning. Cham, Switzerland: Springer, 2020, pp. 17–31.

[46] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, “Inverting
gradients—How easy is it to break privacy in federated learning?”
in Proc. Annu. Conf. Neural Inf. Process. Syst. (NeurIPS), 2020,
pp. 1–11.

[47] P. Kairouz, Z. Liu, and T. Steinke, “The distributed discrete Gaussian
mechanism for federated learning with secure aggregation,” in Proc. Int.
Conf. Mach. Learn. (ICML), 2021, pp. 1–54.

[48] W. Chen, C. A. Choquette-Choo, P. Kairouz, and A. T. Suresh,
“The fundamental price of secure aggregation in differentially private
federated learning,” in Proc. Int. Conf. Mach. Learn. (ICML), 2022,
pp. 1–34.

[49] M. C. Thomas and A. T. Joy, Elements of Information Theory. Hoboken,
NJ, USA: Wiley-Interscience, 2006.

Xingyu Lu received the B.E. degree from the
Department of Computer Science and Information
Technology, Zhejiang Gongshang University, China,
in 2019, and the M.Sc. degree in robotics (computer
science) from the Khoury College of Computer
Science and the College of Engineering, Northeast-
ern University, Boston, MA, USA. He is currently
pursuing the Ph.D. degree with the Department of
Electrical and Computer Engineering, University of
California, Riverside. His research interests include
private machine learning, distributed learning, and
federated learning.

Hasin Us Sami (Graduate Student Member, IEEE)
received the B.Sc. degree in electrical and elec-
tronic engineering from the Bangladesh University
of Engineering and Technology, Dhaka, Bangladesh,
in 2019. He is currently pursuing the Ph.D. degree
with the Department of Electrical and Computer
Engineering, University of California, Riverside. His
research interests include federated and distributed
machine learning, information theory, secure and
private computing, and wireless networks.

Başak Güler (Member, IEEE) received the B.Sc.
degree in electrical and electronics engineering
from Middle East Technical University (METU),
Ankara, Turkey, and the Ph.D. degree from the
Wireless Communications and Networking Labora-
tory, The Pennsylvania State University, in 2017.
From 2018 to 2020, she was a Post-Doctoral Scholar
with the University of Southern California. She is
currently an Assistant Professor with the Department
of Electrical and Computer Engineering, Univer-
sity of California, Riverside. Her research interests

include information theory, distributed computing, machine learning, and
wireless networks. She is a recipient of the 2022 NSF CAREER Award.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 17,2024 at 20:22:43 UTC from IEEE Xplore. Restrictions apply.

