
Sparsity-Based Secure Gradient Aggregation for
Resource-Constrained Federated Learning

Hasin Us Sami Başak Güler
Department of Electrical and Computer Engineering

University of California, Riverside, CA
hsami003@ucr.edu, bguler@ece.ucr.edu

Abstract—Secure aggregation is an information-theoretic
mechanism for gradient aggregation in federated learning, to
aggregate the local user gradients without revealing them in the
clear. In this work, we study secure aggregation under gradient
sparsification constraints, for resource-limited wireless networks,
where only a small fraction of local parameters are aggregated
from each user during training (as opposed to the full gradi-
ent). We demonstrate that conventional mechanisms can reveal
sensitive user data when aggregating sparsified gradients, due to
the auxiliary coordinate information shared during sparsification,
even when the individual gradients are not disclosed in the
clear. We then propose a coordinate-hiding sparsified secure
aggregation mechanism to address this challenge, which hides
both the gradient parameters and the associated coordinates
under formal information-theoretic privacy guarantees. Our
framework reduces the communication overhead of conventional
secure aggregation baselines by an order of magnitude without
compromising model accuracy.

I. INTRODUCTION

Federated learning (FL) is a popular paradigm for dis-
tributed training, where data-owners (users) perform training
on locally collected datasets, after which the local updates
(e.g., local gradients) are aggregated by a server to form
a global model [1]. While popular in a variety of privacy-
sensitive applications (such as healthcare) due to its on-device
training architecture (data never leaves the device), FL can
still reveal sensitive information about the local data samples
through what is known as gradient inversion attacks [2]–[5].

Secure aggregation (SA) is an information-theoretic mech-
anism to address this challenge without compromising model
accuracy [6]–[11]. SA allows the server to learn the sum of the
local gradients, but without learning any further information
about the individual gradients (beyond their sum). In doing
so, SA prevents the server from associating the aggregated
gradients with any particular user, enhancing resilience against
inversion attacks as the number of users increases [6]–[11].
While popular in enhancing user privacy in distributed settings,
communication overhead is still a major challenge in SA,
which can hinder scalability to larger networks.

Gradient sparsification is a widely adopted technique to
reduce the communication overhead in FL. In this setting,
each user shares only a small portion of their local gradient
parameters with the server (as opposed to sending the entire

This research was sponsored in part by the OUSD (R&E)/RT&L under
Cooperative Agreement Number W911NF-20-2-0267, NSF CAREER Award
CCF-2144927, and the UCR OASIS Fellowship.

gradient), along with their coordinates. The parameters are
selected uniformly random (rand-K), or based on their magni-
tude (top-K), where K is the number of parameters sent from
each user [12]–[19]. The server then aggregates the received
parameters using the received coordinates, where parameters
from different users are aggregated if their coordinates match,
to update the global model for the next training round.

In this work, we study gradient sparsification in the context
of SA. We first demonstrate the potential vulnerabilities associ-
ated with sharing coordinate information during sparsification.
In particular, we show that the local data samples can be recov-
ered from the aggregate of the gradient parameters using the
coordinates shared over multiple training rounds, even if the
gradients are securely aggregated (using SA) at each training
round. We then propose a coordinate-hiding SA framework
to address this challenge, which hides not only the gradient
parameters but also their coordinates during aggregation. Our
framework enables the server to aggregate the sparsified local
gradients, but without learning any information about the gra-
dient parameters (beyond their aggregate) or their coordinates,
under formal information-theoretic privacy guarantees.

Our framework builds on an offline-online trade-off, where
we offload the communication-intensive operations, such as
randomness generation, to a data-independent offline phase.
The offline phase can take place in advance when the network
load is low, or can be parallelized with other components
of training. The online phase depends on the local datasets,
hence should be carried out during training. We then propose
an efficient SA mechanism for the online phase, to aggregate
the sparsified gradients in FL, while revealing no information
about the individual parameters or their coordinates (beyond
their aggregated information).

A related line of work is preserving the privacy of sparse
updates and the corresponding coordinates for gradient spar-
sification in the context of Private Information Retrieval (PIR)
[20], [21]. Different from our work, the PIR setting builds
on a multi-server setup, where users do not collude with the
servers. In contrast, we consider a single-server FL task where
any set of up to T users may collude with the server.

Our contributions can be summarized as follows:

1) We identify the vulnerabilities of sharing coordinate in-
formation in SA, and the necessity of stronger, topology-
hiding privacy notions to enhance adversary-resilience
under sparsification constraints.

2718979-8-3503-8284-6/24/$31.00 ©2024 IEEE

2) We demonstrate successful reconstruction of local data
samples from the aggregate of sparsified gradients, by
utilizing only the knowledge of the rand-K/top-K coor-
dinates of the users.

3) We propose a coordinate-hiding sparsified SA framework,
TinySecAgg, to enhance the scalability of SA in large
model settings, without revealing any information about
the gradient parameters or their coordinates, under formal
information-theoretic privacy guarantees.

4) Our experiments demonstrate that our framework cuts the
communication cost by an order of magnitude (22.5×)
over conventional SA mechanisms.

II. PROBLEM FORMULATION

We consider a centralized FL architecture with N users,
coordinated by a central server. User i ∈ [N] holds a local
dataset Di with Di ≜ |Di| samples. The goal is to train a
global model w ∈ Rd to minimize the global loss,

F (w) ≜
N∑
i=1

Fi(w) (1)

where Fi(w) denotes the local loss of user i. Training is
performed iteratively through global and local training rounds.
At the beginning of each global round t, the server sends the
current state of the global model wt to the users. User i ∈ [N]
generates a local model wt

i ← wt, which is updated locally
through E local training rounds,

wt
i ← wt

i − η∇Fi(w
t
i) (2)

where ∇Fi(w
t
i) is the gradient evaluated on Di, and η is the

learning rate. After E local training rounds, user i sends the
(cumulative) local gradient,

∆t
i ≜ wt

i −wt ∈ Rd (3)

to the server, who then aggregates the received gradients to
update the global model for the next training round,

wt+1 = wt − 1

|U(t)|
∑

i∈U(t)

∆t
i (4)

where U(t) denotes the set of surviving users who succeed in
sending their local updates to the server at round t, as some
users may drop out from the protocol due to poor wireless
connectivity, or device unavailability.

Gradient sparsification is a popular compression mechanism
to improve the communication efficiency in FL, where, instead
of sending the entire gradient ∆t

i to the server, each user sends
only K ≪ d selected parameters. Sparsification typically
involves a process known as error-accumulation, to track the
cumulative error resulting from the parameters that have not
been sent in previous rounds. Accordingly, the sparsification
operation is given by,

xt
i ≜ bt

i ⊙ ∆̃t
i (5)

where ⊙ is the Hadamard product, xt
i denotes the sparsified

local gradient, bt
i ∈ {0,1}d is a binary mask holding the

coordinates of the K parameters selected by user i, where
the ℓth element is given by,

bt
i(ℓ) ≜

{
1 if user i selects coordinate ℓ at round t
0 otherwise

such that ∥bt
i∥1=K, where ∥·∥1 denotes the L1 norm and

∆̃t
i ≜ wt

i −wt + et−1
i = ∆t

i + et−1
i , (6)

where eti denotes the error accumulated at round t,

eti ≜ ∆t
i + et−1

i − xt
i = ∆̃t

i − xt
i. (7)

After constructing the sparsified local gradient xt
i from (5),

user i then sends the selected K parameters from xt
i to the

server, along with the coordinates of the selected parameters.
Using the received coordinates, the server aggregates the
sparsified local gradients xt

i to update the global model,

wt+1 = wt − 1

|U(t)|
∑

i∈U(t)

xt
i (8)

for the next training round. The specific structure of the binary
mask bt

i depends on the sparsification methodology:
1) rand-K sparsification: In this setting, each user selects

K parameters uniformly at random (without replacement)
from ∆̃t

i, and bt
i is a uniformly random binary vector where

∥bt
i∥1 = K, generated independently for each user i ∈ [N].
2) top-K sparsification: In this setting, users send only the

top K parameters with the highest magnitude to the server,
and bt

i ∈ {0, 1}d is a binary vector indicating the coordinates
of the top K parameters from ∆̃t

i with the highest magnitude.
The two mechanisms (rand-K/top-K) have complementary

benefits. Rand-K is more memory and communication ef-
ficient; as the binary masks bt

i are sampled independently
and uniformly at random, they can be generated offline in
advance when the network load is low. Top-K can speed
up convergence, but the coordinates depend on the gradient
magnitudes, which has to be sent online during training.
Threat model. In this work, our focus is on honest-but-
curious adversaries (as is the most common threat model in
SA), where adversaries do not poison the datasets, but try
to reveal additional information about the local datasets of
honest users using the information exchanged during protocol
execution. Similar to [22], the server can freeze the global
model parameters (albeit do not change them). Out of N users,
up to T < N users are adversarial, who may collude with each
other and/or the server. The set of honest and adversarial users
are denoted by H and T = [N]\H, respectively.
Main problem. SA aims at aggregating the local updates xt

i,

xt
agg ≜

∑
i∈U(t)

xt
i (9)

but without revealing any information about the individual
updates (beyond their sum). Formally, this can be stated by
the following mutual information condition,

I({xt
i}i∈H;Mt

T |xt
agg, {xt

i}i∈T ,Rt
T) = 0 (10)

where Mt
T denotes the set of all messages received, and Rt

T

2719

denotes the randomness generated, by the adversaries and the
server at round t. The correct recovery of the aggregate in (9)
is formalized by the following entropy constraint,

H(xt
agg|Mt

U(t)) = 0 (11)

where Mt
U(t) denotes the set of all messages held by the

surviving users U(t) at round t. To compute (9) under the
information-theoretic privacy guarantees from (10), SA proto-
cols enable users to encode their local updates xt

i by using
locally generated random secret masks, and send only an
encoded version to the server. The encoding process hides
the true value of the local updates from the server, while still
allowing the server to decode their sum as in (9), without
learning any information about the individual updates xt

i.
In doing so, SA protocols differ in their encoding/decoding
mechanism. A common challenge in conventional SA proto-
cols is the communication overhead with large models, as the
dimensionality of the encoded gradient sent from each user
is as large as the true gradient, which prevents scalability to
larger models in practice. Our goal in this work is to address
this challenge, where we ask the question,

• Can gradient sparsification enhance the scalability of
secure aggregation?

In this work, we answer this question in the affirmative. Sparsi-
fication can enhance the communication-efficiency of SA, but
additional care should be taken to hide the coordinates, and
naive approaches can do more harm than good. Specifically, as
we demonstrate in the following section, the coordinate infor-
mation exchanged during gradient sparsification can introduce
new vulnerabilities to SA. This is due to the fact that the
coordinates of sparsified local parameters vary across the users
throughout the training, hence, by using the coordinates shared
over multiple rounds, adversaries can reconstruct the local
gradients of individual users from their sum, even when the
gradients are aggregated using SA. To address this challenge,
we then introduce TinySecAgg, a coordinate-hiding sparse SA
framework. Our framework hides both the sparsified gradient
parameters and their coordinates from the server, under formal
information-theoretic privacy guarantees, while significantly
enhancing the communication efficiency of SA.

III. RECONSTRUCTION FROM COMPRESSED GRADIENTS

In this section, we discuss the naive application of gradient
sparsification with SA, to present the associated risks. Gradient
sparsification, as described in Section II, is compatible with
most well-known SA protocols [6], [7], where the key premise
is to learn the sum xt

agg =
∑

i∈U(t) x
t
i from (9), without

disclosing the local updates xt
i. In doing so, users hide their

selected parameters with additive random masks, and send the
encoded parameters (and their coordinates) to the server. The
additive masks are constructed in a way that they cancel out
upon aggregation at the server, thus allowing the server to learn
the sum xt

agg of the local gradients, but without revealing any
further information about the individual gradients xt

i.
In the following, we consider the frozen-model attack from

[22], where the server freezes the model parameters sent to the
users, as a result the local gradients ∆t

i are stable throughout

(a) Original images.

(b) Recovered images after 1 iteration.

(c) Recovered images after 500 iterations.

Fig. 1: (rand-K) Image reconstruction quality with varying
number of training rounds.

the iterations. This setting can also emerge (without the attack)
when the model is close to convergence. We next demonstrate
a gradient reconstruction mechanism that allows the server to
recover the individual gradients ∆t

i for all i ∈ [N], using only
the sum of the sparsified gradients xt

agg and their coordinates
over multiple training rounds.

Let τ ti (ℓ) < t be the most recent training round (prior to t)
in which user i shares coordinate ℓ with the server. From the
error accumulated up to round t, one can rewrite (6) as,

∆̃t
i(ℓ) = (t− τ ti (ℓ))∆i(ℓ) (12)

where ∆i(ℓ) is the ℓth element of the gradient2 ∆i of user i
as defined in (3), using which the sparsified gradient from (5)
can be written as,

xt
i(ℓ) = bt

i(ℓ)(t− τ ti (ℓ))∆i(ℓ) (13)

where xt
i(ℓ) denotes the ℓth element of xt

i. After SA, the
server learns the aggregate of the sparsified gradients for each
coordinate ℓ ∈ [d],

xt
agg(ℓ) =

∑
i∈U(t)

xt
i(ℓ) (14)

=
∑

i∈U(t)

bt
i(ℓ)(t− τ ti (ℓ))∆i(ℓ) (15)

From (15), along with the selected coordinates bt
i from users

i ∈ U(t), the server can construct the following,

A

∆1(ℓ)
...

∆N (ℓ)

+ n =

x
1
agg(ℓ)

...
xJ
agg(ℓ)

 ∀ℓ ∈ [d], (16)

where J is the total number of training rounds, n denotes the
noise incurred due to local training across the rounds, and A

2One can omit the time index t from the local gradient ∆t
i as the local

gradients are stable throughout the iterations.

2720

is a J ×N matrix defined as,

A ≜

b1
1(ℓ)(1− τ11 (ℓ)) · · · b1

N (ℓ)(1− τ1N (ℓ))
...

...
...

bJ
1 (ℓ)(J − τJ1 (ℓ)) · · · bJ

N (ℓ)(J − τJN (ℓ))

 (17)

by letting bt
i(ℓ) = 0 for the dropout users i ∈ [N]\U(t)

without loss of generality. By using A and the aggregate of the
sparsified gradients {xt

agg}t∈[J], the server can finally recover
the local gradients ∆∗(ℓ) ≜

[
∆1(ℓ) · · · ∆N (ℓ)

]T
for each

coordinate ℓ ∈ [d], by solving a least squares problem,

∆∗(ℓ) = (ATA)−1AT[x1
agg(ℓ) · · · xJ

agg(ℓ)
]T

Upon recovering the local gradients {∆∗(ℓ)}ℓ∈[d], the server
can apply any gradient inversion attack (e.g., [3]) to reveal the
local data samples from the local gradients.

In Fig. 1, we demonstrate the image reconstruction quality
on a ResNet-18 model trained on the CIFAR-10 dataset
across 5 users [23], [24], where each user holds a single
random data sample in accordance with [3], [22]. The selected
parameters are aggregated using the SA protocol SecAgg
from [6], while we note that our results are indifferent to the
specific SA protocol used (as the final aggregated gradient is
the same). After reconstructing the local gradients, gradient
inversion from [3] is applied to recover the images. The
reconstruction quality is measured using the mean square
error (MSE) between the recovered and original image. Fig. 1
demonstrates the recovered images for rand-K sparsification,
with K = 0.01d, i.e., only 1% of the gradient parameters
are aggregated from each user. We observe that the quality of
the recovered images approaches the original images after a
sufficiently large number of training rounds.

Our key observation is that the attack can only be launched
when coordinate information is available. When coordinate
information is not available, reconstruction is unsuccessful,
as observed in Fig. 1(b). Motivated by these findings, in the
following, we introduce a coordinate-hiding SA mechanism,
to enhance the security of SA under sparsification.

IV. COORDINATE-HIDING GRADIENT SPARSIFICATION FOR
SECURE AGGREGATION

This section presents TinySecAgg, a coordinate-hiding rand-
K gradient sparsification mechanism for SA. Our framework
builds on an offline-online trade-off, where we offload the
communication-intensive operations, such as randomness gen-
eration, to a data-independent offline phase, which can take
place in advance prior to training. In the online phase, users
only communicate an encoded version of the selected gradient
parameters and their coordinates (as opposed to their true
values). At the end, the server decodes the correct aggregate
of the gradient parameters for each coordinate, but without
learning the individual parameters or their coordinates. Our
framework operates in a finite field Fp of integers modulo a
large prime p, where all operations are carried out in Fp. We
next describe the details of the offline and online phases.
Offline Phase. Initially, users define a binary vector ak ∈
{0, 1}d for each k ∈ [d], where only the kth element is equal

to 1, and all other elements are 0, and then partition ak into
M equal-sized shards,

ak =
[
aT
k1 . . . aT

kM

]T
. (18)

where parameter M controls a trade-off between
communication-efficiency and adversary tolerance. Users
then agree on N + M + T distinct public parameters
{αi}i∈[N], {βn}n∈[M+T] from Fp. User i ∈ [N] generates a
random binary mask bt

i ∈ {0, 1}d for rand-K sparsification,
where K out of d elements are set to 1 uniformly at random
(without replacement). Let Kt

i ≜ {ℓ : bt
i(ℓ) = 1} denote the

(ordered) set of the K coordinates selected by user i. Then,
user i generates two Lagrange interpolation polynomials,

ϕik(α) ≜
∑

n∈[M]

aKt
i(k),n

∏
n′∈[M+T]\{n}

α− βn′

βn − βn′

+

M+T∑
n=M+1

vt
ikn

∏
n′∈[M+T]\{n}

α− βn′

βn − βn′
, (19)

ψik(α) ≜
∑

n∈[M]

aKt
i(k),n

rtik
∏

n′∈[M+T]\{n}

α− βn′

βn − βn′

+

M+T∑
n=M+1

ut
ikn

∏
n′∈[M+T]\{n}

α− βn′

βn − βn′
, (20)

for all k ∈ [K], where Kt
i(k) denotes the kth element of

Kt
i ; {rtik}k∈[K] are K random masks generated uniformly

at random from Fp; and {vt
ikn,u

t
ikn}k∈[K],n∈{M+1,...,M+T}

are generated uniformly at random from Fd/M
p . The random

masks {rtik}k∈[K] will later be used to hide the true value
of the gradient parameters in the online phase, whereas the
random vectors {vt

ikn,u
t
ikn}k∈[K],n∈{M+1,...,M+T} will hide

the contents of the masks {rtik}k∈[K] as well as the selected
coordinates. Finally, user i sends the encoded vectors ϕik(αj)
and ψik(αj) to user j ∈ [N], which will later be used in
the online phase to ensure the correct matching of the local
gradient parameters within the global model, while preventing
the server from gaining explicit access to the coordinates.
Online Phase. After local training and sparsification, user i ∈
[N] transforms its sparsified local gradient xt

i ∈ Rd to Fp,

xt
i(ℓ) ≜ f(xt

i(ℓ)) ∀ℓ ∈ Kt
i (21)

where the finite field transform f(·) : Rd → Fd
p is common to

secure multi-party computing frameworks [25]–[28]. For the
details of this transformation, we refer to [11], [26], [29], [30].
Next, user i broadcasts a masked gradient parameter,

x̂t
ik ≜ xt

i(Kt
i(k))− rtik (22)

for each k ∈ [K], where the true content of the K selected
parameters Kt

i are hidden by the K random masks rti1, . . . , r
t
iK

generated in the offline phase. After receiving (22), each user
i sends a local aggregate of the encoded gradients:

φ(αi) ≜
∑

j∈U(t)

∑
k∈[K]

(x̂t
jkϕjk(αi) + ψjk(αi)), (23)

to the server. The local computations φ(αi) in (23) can be

2721

Online Offline

SecAgg O(N + d) O(N)
SecAgg+ O(log(N) + d) O(log(N))
LightSecAgg O(d+ d/M) O(Nd/M)
TinySecAgg O(K + d/M) O(KNd/M)

TABLE I: Comparison of per-round communication complex-
ity of TinySecAgg with SA baselines.

viewed as evaluations of a degree M + T − 1 polynomial
φ(α) at α = αi. As a result, after collecting φ(αi) from any
set of M +T users, the server can reconstruct the polynomial
φ(α) via polynomial interpolation, and recover,

xt
agg =

∑
i∈U(t)

xt
i =

[
φT(β1) · · · φT(βM)

]T
(24)

which corresponds to the true (desired) sum of the sparsified
local gradients. After aggregating the local gradients, the
server updates the global model,

wt+1 ← wt − 1

|U(t)|
f−1(xt

agg) (25)

In the following, we demonstrate the theoretical guarantees
and performance trade-offs of TinySecAgg.

V. THEORETICAL ANALYSIS

In this section, we present the formal privacy, complexity,
and correctness guarantees.

Theorem 1. (Communication Complexity) The per-user com-
munication complexity of TinySecAgg is O(K + d

M) (online)
and O(KN d

M) (offline).

Theorem 2. (Computation Complexity) The per-user compu-
tation complexity of TinySecAgg is O(NK d

M) (online) and
O(NK d

M log2(M + T) log log(M + T)) (offline).

Theorem 3. (Correctness) TinySecAgg ensures the correct
recovery of the aggregate xt

agg =
∑

i∈U(t) x
t
i of sparsified

gradients from (24), from the messages of any set U(t) of
|U(t)| ≥M + T surviving users,

H
(∑
i∈U(t)

xt
i|{x̂t

i}i∈U(t), {φ(αi)}i∈U(t)

)
= 0 (26)

Theorem 4. (Privacy) TinySecAgg ensures information-
theoretic privacy for both the gradients and their coordinates
against up to T adversaries, for any |U(t)| ≥ T +M ,

I({xt
i,Kt

i}[N]\T ;Mt
T |

∑
i∈U(t)

xt
i, {xt

i,Kt
i}i∈T ,Rt

T) = 0

Finally, the convergence guarantees follow using the stan-
dard assumptions from [12], [14], [19], [31].

VI. EXPERIMENTS

We evaluate the performance of TinySecAgg with respect
to conventional SA baselines SecAgg [6], SecAgg+ [7], and
LightSecAgg [8], where users aggregate the full gradient.
Setup. We consider a distributed network with N = 100
users, where 10% of the users (randomly) drop out at each

Framework FEMNIST CIFAR-10

SecAgg 738813 172304
SecAgg+ 738810 172300
LightSecAgg 757277 176601
TinySecAgg (K = 0.05d) 56831 13150
TinySecAgg (K = 0.01d) 43760 7645

TABLE II: Total communication overhead (Mbits) to reach
convergence test accuracy (75%-FEMNIST, 67%-CIFAR-10).

(a) FEMNIST. (b) CIFAR-10.

Fig. 2: Test accuracy of TinySecAgg vs. full gradient aggre-
gation (with and without SA).

round. The number of adversarial users is T = N
2 [6]. We

consider image classification tasks on the following datasets:
1) FEMNIST, a non-IID dataset by design, using the CNN
model and data distribution from [32], 2) CIFAR-10, using the
CNN model and data distribution (IID) from [1]. We evaluate
the performance for two sparsification levels, K = 0.05d, and
K = 0.01d, with M = 40, which is the maximum number of
shards allowed by Theorem 4.

Table I compares the per-round communication complexity
of TinySecAgg with the SA baselines. In Table II, we present
the total online communication overhead to reach the target
test accuracy at convergence. As the model size d is large (in
the order of 106) compared to the number of users N , all
SA baselines incur similar communication overhead (as they
communicate the full gradient), whereas TinySecAgg reduces
the cost by up to 22.5× over the best baseline.

In Fig. 2, we further compare the convergence of Tiny-
SecAgg (SA with sparsification) with respect to SA without
sparsification (i.e., full gradient aggregation with SA). All SA
baselines carry out the same training operations and hence
have the same test accuracy, as they only differ in their
encoding mechanism, not in training. We also demonstrate
the convergence of the same model architecture, but without
sparsification or SA (i.e., full gradient aggregation without
SA). This represents our target accuracy, as the finite-field
conversion in SA can degrade accuracy. We observe that
TinySecAgg achieves comparable accuracy to all baselines
(with or without SA).

VII. CONCLUSION

In this work, we study gradient sparsification in the con-
text of SA. We identify the vulnerabilities of sharing co-
ordinate information in gradient sparsification, and intro-
duce a coordinate-hiding SA mechanism, TinySecAgg, to
enhance the reliability of SA in resource-limited settings. Our
framework provides an order of magnitude improvement in
communication-efficiency without degrading model accuracy.

2722

REFERENCES

[1] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Int. Conf. on Artificial Int. and Stat. (AISTATS), 2017.

[2] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” in Advances
in Neural Information Processing Systems (NeurIPS), 2019.

[3] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, “Inverting
gradients - how easy is it to break privacy in federated learning?” in
Advances in Neural Information Processing Systems (NeurIPS), 2020.

[4] H. Yin, A. Mallya, A. Vahdat, J. M. Alvarez, J. Kautz, and P. Molchanov,
“See through gradients: Image batch recovery via gradinversion,” in
IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2021.

[5] Y. Wen, J. Geiping, L. Fowl, M. Goldblum, and T. Goldstein, “Fishing
for user data in large-batch federated learning via gradient magnifica-
tion,” in International Conference on Machine Learning, ICML, 2022.

[6] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in Proceedings of the ACM
SIGSAC Conf. on Computer and Communications Security (CCS), 2017.

[7] J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and M. Raykova,
“Secure single-server aggregation with (poly) logarithmic overhead,” in
Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2020, pp. 1253–1269.

[8] J. So, C.-S. Yang, S. Li, Q. Yu, R. E Ali, B. Guler, and S. Avestimehr,
“Lightsecagg: a lightweight and versatile design for secure aggregation
in federated learning,” Proc. of Machine Learning and Systems, 2022.

[9] Y. Zhao and H. Sun, “Information theoretic secure aggregation with user
dropouts,” IEEE Transactions on Information Theory, vol. 68, no. 11,
pp. 7471–7484, 2022.

[10] H. U. Sami and B. Güler, “Secure aggregation for clustered federated
learning,” in IEEE International Symposium on Information Theory
(ISIT), 2023, pp. 186–191.

[11] ——, “Secure aggregation for clustered federated learning with passive
adversaries,” IEEE Transactions on Communications, 2024.

[12] S. U. Stich, J. Cordonnier, and M. Jaggi, “Sparsified SGD with memory,”
in Annual Conf. on Neural Information Processing Systems, 2018.

[13] D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat, and
C. Renggli, “The convergence of sparsified gradient methods,” in Annual
Conference on Neural Information Processing Systems (NeurIPS), 2018.

[14] P. Jiang and G. Agrawal, “A linear speedup analysis of distributed deep
learning with sparse and quantized communication,” in Advances in
Neural Information Processing Systems (Neurips), 2018, pp. 2530–2541.

[15] H. Xu, C.-Y. Ho, A. M. Abdelmoniem, A. Dutta, E. H. Bergou, K. Karat-
senidis, M. Canini, and P. Kalnis, “Grace: A compressed communication
framework for distributed machine learning,” in IEEE 41st International
Conference on Distributed Computing Systems (ICDCS), 2021.

[16] A. Xu and H. Huang, “Detached error feedback for distributed sgd with
random sparsification,” in Int. Conf. on Machine Learning (ICML), 2020.

[17] H. U. Sami and B. Güler, “Over-the-air personalized federated learning,”
in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2022, pp. 8777–8781.

[18] J. Wang, Y. Lu, B. Yuan, B. Chen, P. Liang, C. De Sa, C. Re, and
C. Zhang, “CocktailSGD: Fine-tuning foundation models over 500Mbps
networks,” in Proceedings of the 40th International Conference on
Machine Learning (ICML), 2023, pp. 36 058–36 076.

[19] A. Xu, Z. Huo, and H. Huang, “Step-ahead error feedback for distributed
training with compressed gradient,” in Thirty-Fifth AAAI Conference on
Artificial Intelligence, AAAI, 2021, pp. 10 478–10 486.

[20] S. Vithana and S. Ulukus, “Private read update write (PRUW) in
federated submodel learning (FSL): communication efficient schemes
with and without sparsification,” IEEE Trans. Inf. Theory, 2024.

[21] ——, “Private read-update-write with controllable information leakage
for storage-efficient federated learning with top r sparsification,” IEEE
Trans. Inf. Theory, 2023.

[22] M. Lam, G. Wei, D. Brooks, V. J. Reddi, and M. Mitzenmacher,
“Gradient disaggregation: Breaking privacy in federated learning by
reconstructing the user participant matrix,” in Proceedings of the 38th
International Conference on Machine Learning, (ICML), 2021.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition, CVPR, 2016, pp. 770–778.

[24] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Citeseer, Tech. Rep., 2009.

[25] X. Lu and B. Güler, “Breaking the quadratic communication overhead
of secure multi-party neural network training,” in IEEE International
Symposium on Information Theory (ISIT), 2023, pp. 921–926.

[26] X. Lu, H. U. Sami, and B. Güler, “Dropout-resilient secure multi-party
collaborative learning with linear communication complexity,” in Pro-
ceedings of The 26th International Conference on Artificial Intelligence
and Statistics, ser. Proceedings of Machine Learning Research, vol. 206,
2023, pp. 10 566–10 593.

[27] X. Lu, H. U. Sami, and B. Güler, “Privacy-preserving collaborative
learning with linear communication complexity,” IEEE Transactions on
Information Theory, 2023.

[28] ——, “Scalr: Communication-efficient secure multi-party logistic re-
gression,” IEEE Transactions on Communications, vol. 72, no. 1, pp.
162–178, 2024.

[29] J. So, B. Guler, and A. S. Avestimehr, “Byzantine-resilient secure
federated learning,” IEEE Journal on Selected Areas in Comm., 2020.

[30] J. So, B. Güler, and S. Avestimehr, “A scalable approach for privacy-
preserving collaborative machine learning,” in Advances in Neural
Information Processing Systems (NeurIPS), 2020.

[31] H. U. Sami and B. Güler, “Over-the-air clustered federated learning,”
IEEE Transactions on Wireless Communications, 2023.

[32] S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečnỳ, H. B. McMahan,
V. Smith, and A. Talwalkar, “Leaf: A benchmark for federated settings,”
arXiv preprint arXiv:1812.01097, 2018.

2723

