
Secure Submodel Aggregation for Resource-Aware
Federated Learning

Hasin Us Sami Başak Güler
Department of Electrical and Computer Engineering

University of California, Riverside, CA
hsami003@ucr.edu, bguler@ece.ucr.edu

Abstract—Secure aggregation (SA) is a privacy-enhancing
framework for federated learning, to aggregate the local gradient
updates from the users without revealing them in the clear.
Conventional SA frameworks are built under the assumption of
homogeneous computational resources across the users, where
users are bound to train a local model whose dimensions
are as large as the global model, preventing resource-limited
users from participating in training. In this work, we propose
a novel secure submodel training framework to address this
challenge, where users train and communicate partial submodels
through an adaptable secure aggregation mechanism during
training. Our framework enables the participation of all users
with varying computation and communication resources, while
ensuring formal information-theoretic privacy guarantees for the
individual local updates.

I. INTRODUCTION

Federated learning (FL) is a collaborative training architec-
ture where multiple data-owners (users) jointly train a shared
global model without sharing their private data [1]. Instead,
users perform training locally on their private datasets, after
which the local updates (e.g., gradients) are aggregated by a
server to update the global model. By eliminating the need for
sharing sensitive data, FL has found applications in a variety
of privacy-sensitive fields, such as healthcare. On the other
hand, recent works have shown that even the local updates may
reveal extensive information about sensitive datasets, through
what is known as gradient inversion attacks [2]–[4]. Secure
aggregation (SA) protocols aim to mitigate such information
leakage, by allowing the server to aggregate the local updates
without observing them in the clear [5]–[10].

Existing SA protocols consider a homogeneous setting
where all users have equal computational resources, and the
size of the local model trained by all users is as large as the
global model. This imposes a major challenge in real-world
applications, where user devices have different computation
capabilities, further exacerbated by the fact that model sizes
continue to grow in practice, preventing resource-limited de-
vices from participating in training. In this work, our goal is
to address this challenge, by developing an SA framework for
networks with heterogeneous compute capabilities.

Several recent works have considered FL (without SA)
under heterogeneous compute resources [11]–[15]. References
[11], [12] leverage bidirectional knowledge distillation where

This research was sponsored in part by the OUSD (R&E)/RT&L under
Cooperative Agreement Number W911NF-20-2-0267, NSF CAREER Award
CCF-2144927, and the UCR OASIS Fellowship.

users train a smaller model than the server. References [13]–
[16] train partial submodels extracted from the original global
model, where the size of the submodels are adapted to the on-
device computation capabilities of the users. These existing
works consider training without SA, where the server has
access to individual local model updates.

In contrast, our goal is to enable submodel training for
SA, where the server can only learn the aggregate of the
submodels, without learning any further information about
the selected submodels. To that end, we first demonstrate
the vulnerabilities of existing SA frameworks for submodel
aggregation, and the necessity to hide not only the submodel
parameters, but also the submodels selected by each user.
We then propose a novel SA framework, SESA (Secure
Submodel Aggregation), to enable secure gradient aggregation
in networks with heterogeneous compute resources. SESA
enables each user to train a smaller model extracted from the
global model according to their resource availability, while
hiding both the selected submodels by each user, and the
individual parameters for the selected submodels, under formal
information-theoretic privacy guarantees. In doing so, our
framework enables adaptability for resource-limited users to
train and communicate smaller partial models, reducing both
the computation and communication overhead simultaneously.

Recent works [17]–[19] consider the privacy of submodel
indices in the context of Private Information Retrieval (PIR).
Different from our work, the PIR task builds on a multi-server
setting, where the servers do not collude with the users. In
contrast, our work is built on a single-server FL setup, where
the goal is to ensure privacy against any collusions across up
to T users and the server.

Our contributions are summarized as follows:

• We demonstrate the vulnerabilities of conventional SA
protocols for submodel training, due to the heterogeneity
between the submodels selected by different users.

• We propose the first SA framework that simultaneously
tackles heterogeneous computation and communication
resource limitations of the users.

• We demonstrate the formal information-theoretic privacy
guarantees for hiding both the individual local model
updates and the selected submodels by each user.

• Our theoretical analysis demonstrates the adaptability of
SESA to resource heterogeneity across the users, in terms
of both the computation and communication load.

• Our experiments demonstrate that our SA framework

2724979-8-3503-8284-6/24/$31.00 ©2024 IEEE



achieves comparable performance to state-of-the-art sub-
model training benchmarks (without SA).

II. PROBLEM FORMULATION

We consider a network of N users, where user i ∈ [N ]
holds a local dataset Di. In conventional FL, users have equal
compute and computational resources, and the goal is to train
a global model w ∈ Rd to minimize a (global) loss function,

F (w) ≜
N∑
i=1

ωiFi(w) (1)

where ωi ≜
|Di|∑N
i=1|Di|

, and

Fi(w) ≜
1

|Di|
∑
ξ∈Di

f(ξ,w) (2)

denotes the local loss function of user i where f(ξ,w) is the
loss computed on the data sample ξ.
Submodel training. Unlike conventional FL, in real-world
settings users may have heterogeneous computational re-
sources. Submodel training is a recent framework to address
this challenge, where users can train models with varying
sizes, adapted to their resource availability [14], [15]. To do
so, each user i ∈ [N ] extracts a partial model wi from the
global model w. Then, the local loss function of user i is
defined as,

Fi(wi) ≜
1

|Di|
∑
ξ∈Di

f(ξ,wi), (3)

The partial model wi is determined by the resource availability
of user i, quantified by a parameter Bi denoting the fraction of
nodes extracted from each fully connected layer in the global
model w [15]. For convolutional layers, this represents the
fraction of the total number of kernels selected within each
layer of the global model w. In doing so, users with high
computational resources can train larger models by extracting
a larger partial model, whereas resource-limited users can train
smaller models by choosing a smaller partial model.

At each training round t ∈ [J ], the server then sends the
current state wt of the global model w to the N users.
After receiving the global model, user i ∈ [N ] extracts a
partial model wt

i , consisting of the extracted parameters across
different layers, according to its resource constraint Bi. Next,
user i updates the partial model through local training,

wt
i ← wt

i − η∇Fi(w
t
i) (4)

where η is the learning rate and ∇Fi(w
t
i) denotes the gradient

computed with respect to the partial model wt
i . Let Iti denote

the ordered set of the indices of the extracted parameters by
user i at round t. After E rounds of local training, user i
computes the model difference for the extracted parameters,

gt
i(k) ≜ wt

i(k)−wt(k) (5)

for all k ∈ Iti , where v(k) denotes the kth parameter of a
vector v. Then, user i sends gt

i(k) for all k ∈ Iti to the server.
In doing so, some users may drop out from the network due
to various reasons, including poor channel conditions, limited

battery, or device unavailability. After receiving the parameter
updates in (5) from the surviving users i ∈ U t ⊆ [N ], the
server updates the global model for the next training round,

wt(k) = wt(k)− 1

N

∑
i∈St

k∩Ut

gt
i(k) (6)

for all k ∈ [d], where Stk ≜ {i ∈ [N ] : k ∈ Iti} denotes the
set of users who update the kth parameter at round t.

Threat model. We consider an honest-but-curious adversary
model along the line of conventional SA protocols, where
adversaries follow the training protocol truthfully, but try to
extract confidential information about honest users’ local data
through the messages exchanged [5]–[8]. We consider up to
T adversarial users, who may collude with one another and/or
the server. The set of adversarial and honest users are denoted
as T and H ≜ [N ]\T , respectively.

Secure aggregation. SA aims to aggregate the local updates
gt
i , without revealing any information beyond their sum,

gt
agg ≜

∑
i∈Ut

gt
i (7)

Formally, this condition is expressed as,

I({gt
i}i∈H;Mt

T |gt
agg, {gt

i}i∈T ,Rt
T ) = 0 (8)

whereMt
T denotes the received messages, and Rt

T is the ran-
domness generated, by the adversaries and the server at round
t. The correct recovery of (7) is ensured by the constraint,

H(gt
agg|Mt

Ut) = 0 (9)

where Mt
Ut encompasses the set of messages held by the

surviving users U t at round t. To compute (7) under the privacy
guarantees from (8), users encode their local updates gt

i , send-
ing instead the encoded version to the server. The encoding
process obscures the true user updates from the server using
locally generated random masks, while still allowing the server
to decode their sum as in (7), without gaining any information
about the individual updates gt

i . While doing so, SA protocols
differ in their encoding/decoding process [5]–[8].

A major challenge of SA is its computational overhead; the
dimensionality of the model trained by each user is as large
as the global model, limiting scalability to resource-limited
networks with heterogeneous compute capabilities. We aim to
tackle this challenge by posing the question,

• Can submodel training enhance the scalability of SA to
networks with heterogeneous compute resources?

In this work, we show that submodel training can enable
SA in networks with heterogeneous compute resources, but
additional care should be taken to anonymize the updated
submodels, and naive approaches can be detrimental to the
security premise of SA. As discussed later in Section III, SA is
vulnerable to submodel training; varying submodel dimensions
across the users allow adversaries to reconstruct local data
samples of honest users even in the presence of SA. Our results
emphasize the necessity for stronger security guarantees for
submodel training, concealing not only the local submodels,

2725



Fig. 1. Overview of an attack scenario with N = 2 users.

but also the indices of updated submodel parameters:

I({gt
i(k), k} i∈H

k∈It
i

;Mt
T |{

∑
i∈St

k∩Ut

gt
i(k)}k∈[d],

{gt
i(k), k} i∈T

k∈It
i

,RT ) = 0 (10)

To address this challenge, we introduce SESA (Secure
Submodel Aggregation), a secure aggregation framework for
submodel training. Our framework enables users to flexibly
train partial models based on their available system resources,
while satisfying (10). In doing so, SESA hides both the trained
submodels and indices of the updated submodel parameters
from the server, ensuring the formal information-theoretic
privacy guarantees from (10), while significantly enhancing
both the compute and communication efficiency of SA.

III. RECONSTRUCTION ATTACKS

SA frameworks are built upon various information-theoretic
primitives, while all are designed to achieve the same goal of
recovering the sum of the local parameters without revealing
the individual parameters. A naive approach to extend the
existing frameworks to submodel training is to perform SA
parameter-wise. On the other hand, as we demonstrate next,
by leveraging the heterogeneity between the submodels, the
server can perfectly reconstruct the sensitive training samples.

Consider a network of N = 2 users as shown in Fig. 1, with
the resource constraints B1 = 1/4 and B2 = 1/2. Let xi ∈
Rm denote the training sample of user i, which is the input to
a fully connected layer consisting of 4 nodes n1, n2, n3, n4.
Without loss of generality, at a given training round t, assume
that user 1 selects node n1 and user 2 selects nodes n1, n2.
Denote the global weight parameters corresponding to node
nj as wt

nj
∈ Rm and the bias parameter as ztnj

. As the server
knows the submodel indices of the users, it can identify that
the aggregate of the gradient parameters corresponding to node
n2 is equal to the local gradient parameter of user 2. Similarly,
the aggregate of the gradient parameters corresponding to node
n1 is sum of the local gradient parameters of users 1 and 2.
Then, the server can recover the input training samples of both
users as follows.

For user 2, the output of node n2 can be written as,

yt2,n2
≜ (wt

n2
)Tx2 + ztn2

(11)

hence, the gradients with respect to the weight wt
n2

and bias
ztn2

are given by,

∂F2

∂(wt
n2
)T =

∂F2

∂yt2,n2

∂yt2,n2

∂(wt
n2
)T =

∂F2

∂yt2,n2

× xT
2 (12)

∂F2

∂ztn2

=
∂F2

∂yt2,n2

∂yt2,n2

∂ztn2

=
∂F2

∂yt2,n2

× 1 (13)

By combining (12) and (13), one can recover the input sample,

xT
2 =

∂F2

∂(wt
n2
)T /

∂F2

∂ztn2

. (14)

Therefore, by leveraging the gradient parameters correspond-
ing to node n2 sent by user 2, the server can reconstruct
the training sample of user 2. Then, the server can use the
recovered sample of user 2 to find the gradient parameters of
user 2 corresponding to node n1, i.e., ∂F2

∂(wt
n1

)T and ∂F2

∂zt
n1

. Using
the aggregate of the gradients (of two users) obtained through
SA, the server can recover the gradient of user 1,

∂F1

∂(wt
n1
)T =

∑
i∈[2]

∂Fi

∂(wt
n1
)T −

∂F2

∂(wt
n1
)T (15)

∂F1

∂ztn1

=
∑
i∈[2]

∂Fi

∂ztn1

− ∂F2

∂ztn1

(16)

Finally, by using the gradient obtained from (15) and (16),
the server can also recover the training sample x1 of user 1 as
in (14). Hence, disclosing the submodel parameter indices can
reveal sensitive training samples, undermining the key premise
of SA. In the following, we introduce a secure submodel
aggregation framework, SESA, to address this challenge. Our
framework enables submodel aggregation without disclosing
neither the submodel parameters nor their indices.

IV. SECURE SUBMODEL AGGREGATION (SESA)

We next describe the individual steps of our framework.

Submodel Selection. We consider a random submodel extrac-
tion scheme, where the global model is divided into multiple
submodels, and each user selects a number of submodels in
accordance with their compute capability. To that end, we let
L denote the total number of layers2. The nodes within each
layer are divided into 1/Bmin shards, where

Bmin ≜ mini∈[N ]{Bi} (17)

denotes the resource constraint of the user with the lowest
compute capability. A submodel is then defined as the set of
all pairwise connections across two distinct shards between
two consecutive layers. Accordingly, the total number of
submodels between any two layers (l, l + 1) for l ∈ [L] is,

K ≜ 1/B2
min (18)

From each layer l ∈ [L], user i ∈ [N ] then selects Bi/Bmin
shards uniformly at random (without replacement), corre-
sponding to a total number of,

Ki ≜ B2
i /B

2
min (19)

2For ease of exposition, we describe our framework using fully connected
layers, while noting that the same principles can be applied also to convolu-
tional layers, in which case kernels can be used to form submodels.

2726



User 1 - low-resource

Round t Round t+1

Global model

Layer 1

User 2 - high-resource

Layer 2

shards from layer 1

shards from layer 2

Global model

User 1 - low-resource User 2 - high-resource

submodel

Fig. 2. Overview of submodel extraction with N = 2 users. The resource constraints of the users are given as B1 = 1/3, B2 = 2/3. The nodes in each
layer are divided into 1/B1 = 3 shards according to (17). The user with low computational power (user 1) selects B1/B1 = 1 shard, whereas the user
with higher computational power (user 2) selects B2/B1 = 2 shards from each layer. The pairwise connections between any two shards selected across two
consecutive layers represents a submodel selected by the user (each submodel is represented by a distinct color).

submodels. After submodel selection, user i extracts the se-
lected submodels from the global model wt, updates them
through local training as shown in (4), and forms the submodel
update gt

i as in (5). We provide an illustrative example in Fig.
2 for a network of N = 2 users.

Secure Aggregation. After submodel selection, our goal is
to sum the submodel updates as in (6), while ensuring that
the server cannot learn anything about which submodels are
selected by the individual users as shown in (10).

Our framework consists of an offline and an online phase.
The former is data-independent such as randomness gener-
ation, which can be executed in advance when the network
load is low. The latter is data-dependent, including local
training and model update. Then, the following operations
are performed layer-wise (independently) to aggregate the
submodels selected within each pair of consecutive layers
(l, l+ 1) for l ∈ [L]. For simplicity, in the following we omit
the layer index l, while noting that a new set of randomness
is generated for each layer. All operations are performed in a
finite field Fp of integers modulo a large prime p.

Offline. Initially, users agree on N + K + T distinct public
parameters {αi}i∈[N ], {βn}n∈[K+T ] from Fp. Let Kt

i denote
the ordered set of the submodel indices selected by user i,
where |Kt

i | = Ki, and Kt
i(k) ∈ [K] denotes the index of the

kth submodel selected. Then, user i defines a binary vector
bt
ik ∈ {0, 1}K for k ∈ [Ki], with the nth element given by,

bt
ik(n) =

{
1 if n = Kt

i(k)
0 otherwise , (20)

and constructs a Lagrange polynomial of degree K + T − 1,

ϕtik(α) ≜
∑

n∈[K]

bt
ik(n)

∏
n′∈[K+T ]\{n}

α− βn′

βn − βn′

+

K+T∑
n=K+1

utikn
∏

n′∈[K+T ]\{n}

α− βn′

βn − βn′
, (21)

for all k ∈ [Ki], and utikn ∈ Fp for all k ∈ [Ki], n ∈ {K +
1, . . . ,K+T} are selected uniformly at random. Then, user i

generates Ki uniformly random masks rtik ∈ F
d′
K
p for k ∈ [Ki],

where d′ is the dimension of the model for the given layer,

and constructs a Lagrange polynomial of degree K + T − 1,

φt
ik(α) ≜

∑
n∈[K]

bt
ik(n)r

t
ik

∏
n′∈[K+T ]\{n}

α− βn′

βn − βn′

+

K+T∑
n=K+1

vt
ikn

∏
n′∈[K+T ]\{n}

α− βn′

βn − βn′
, (22)

for each k ∈ [Ki] where vt
ikn ∈ Fd′/K

p for all k ∈ [Ki]
and n ∈ {K +1, . . . ,K + T} are selected uniformly random.
Finally, user i sends a distinct evaluation of the polynomials
{ϕtik(αj), φ

t
ik(αj)}k∈[Ki] to each user j ∈ [N ].

Online. In the online phase, after local training, each user
i ∈ [N ] initially generates a finite field representation of their
Ki local submodel updates, denoted by gt

ik ∈ Fd′/K
p for k ∈

Kt
i . This finite field transformation is a standard primitive in

secure multi-party computing frameworks [9], [10], [20]–[23].
For the details of this transformation, we refer to [10], [21],
[24], [25]. User i then broadcasts a masked submodel update,

xt
ik ≜ gt

i,Kt
i(k)
− rtik (23)

for all k ∈ [Ki]. After receiving the masked submodels from
the set of surviving users i ∈ U t, each user i ∈ U t computes,

ψt(αi) ≜
∑
j∈Ut

∑
k∈[Kj ]

(xt
jkϕ

t
jk(αi) + φt

jk(αi)) (24)

=
∑
j∈Ut

∑
k∈[Kj ]

(
gt
j,Kt

j(k)

∏
n′∈[K+T ]\{Kt

j(k)}

αi − βn′

βKt
j(k)
− βn′

+

K+T∑
n=K+1

(gt
j,Kt

j(k)
utjkn − rtjku

t
jkn

+ vt
jkn)

∏
n′∈[K+T ]\{n}

αi − βn′

βn − βn′

)
, (25)

and sends ψt(αi) to the server, which corresponds to a distinct
evaluation of the degree K + T − 1 polynomial,

ψt(α) =
∑
j∈Ut

∑
k∈[Kj ]

(
gt
j,Kt

j(k)

∏
n′∈[K+T ]\{Kt

j(k)}

α− βn′

βKt
j(k)
− βn′

+

K+T∑
n=K+1

(gt
j,Kt

j(k)
utjkn − rtjku

t
jkn

2727



+ vt
jkn)

∏
n′∈[K+T ]\{n}

α− βn′

βn − βn′

)
(26)

=
∑

k∈[K]

∑
j∈Ut∩St

k

(
gt
jk

∏
n′∈[K+T ]\{k}

α− βn′

βk − βn′

+

K+T∑
n=K+1

(gt
jku

t
jkn − rtjku

t
jkn

+ vt
jkn)

∏
n′∈[K+T ]\{n}

α− βn′

βn − βn′

)
, (27)

at α = αi, where Stk ≜ {i ∈ [N ] : k ∈ Kt
i} denotes the set of

all users that have selected submodel k between layers (l, l+
1). Therefore, after receiving at least K + T evaluations, the
server can reconstruct ψt(α) using polynomial interpolation,
and recover the aggregate of the submodel updates,∑

i∈St
k∩Ut

gt
ik = ψt(βk) ∀k ∈ [K]. (28)

After aggregating the submodels for each pair of layers (l, l+
1) ∈ [L], the server updates the global model as in (6).

V. THEORETICAL ANALYSIS

We next present the communication and computation com-
plexity, dropout tolerance, and privacy guarantees of SESA.
Dropout tolerance is defined by the maximum number of
dropped users the system can tolerate while still ensuring
correct recovery of the aggregate of the submodels.

Theorem 1. (Communication complexity) The communication
overhead of SESA for user i ∈ [N ] is O(Ki

d
K ) online, and

O(NKi
d
K ) offline.

Remark 1. The online communication overhead of user i
scales with the number of submodels Ki, which is controlled
by the resource constraint Bi from (19). Hence, SESA can
reduce not only the training load, but also the communication
overhead for resource-limited users, which can be useful
in practice as such users often have limited communication
capabilities also (e.g., edge devices vs. data centers).

Theorem 2. (Computation complexity) The computation over-
head of SESA for user i is O(Nd) online, O(NKi

d
K log2(K+

T ) log log(K + T )) offline.

Theorem 3. (Dropout tolerance) The maximum number of
user dropouts that SESA can tolerate is D ≤ N − (K + T ).

Theorem 4. (Privacy) SESA ensures the information-theoretic
privacy of the local submodels selected by the honest users
against any set of up to T adversarial users and the server,

I
(
{gt

ik} i∈H
k∈Kt

i

, {Kt
i}i∈H;Mt

T

∣∣∣{ ∑
i∈St

k∩Ut

gt
ik

}
k∈[K]

,

{gt
ik} i∈T

k∈Kt
i

, {Kt
i}i∈T ,RT

)
= 0 (29)

where MT and RT denote the set of messages received and
randomness generated by the adversaries, respectively.

(a) MNIST (b) FEMNIST

Fig. 3. Performance evaluation of SESA with respect to the benchmarks.

VI. EXPERIMENTS

We evaluate the performance of SESA compared to both
the state-of-the-art resource-aware submodel training protocol,
FedRolex [15], as well as conventional FL without any re-
source limitations, where all users can train the entire global
model (which serves as our target accuracy). For best baseline
accuracy, both benchmarks are applied without SA, as the
finite field conversion in SA can degrade model performance.

We consider a FL task in a network of N = 100 users for
image classification on the MNIST [26] and FEMNIST [27]
datasets, distributed across the users with respect to the non-
i.i.d. data distributions from [1] and [27], respectively. The
model architecture includes two fully connected layers with
one hidden layer with 200 nodes between the input and output
layer. For resource heterogeneity, users are partitioned into
3 groups G1,G2,G3 uniformly random (without replacement),
where |G1| = |G2| = ⌊N3 ⌋ and |G3| = ⌊N3 ⌋ + 1. Each group
of users has a different resource constraint, given as Bi = 1
for i ∈ G1, Bi = 1/2 for i ∈ G2, and Bi = 1/4 for i ∈ G3. At
each training round, D = 10% of the users drop out uniformly
random, as user dropout rates vary between 0.06 and 0.1 in
real-world settings [28]. The total number of adversarial users
is T = N

2 [5]. The size of the finite field is set to p = 232−5.
In Fig. 3, we present the test accuracy of SESA and the

benchmarks. For a fair comparison, we use the same resource
allocation and hyperparameters for both FedRolex and SESA.
We observe that both frameworks reach a comparable accuracy
at convergence, while SESA has a faster convergence rate.
This could be due to the cyclic submodel selection mechanism
employed by the former, where users select a fraction of nodes
which are advanced by one node at each training round. For
instance, a user with resource constraint Bi = 1/4 initially
selects 50-out-of-200 nodes from the hidden layer and then
rolls over through all the nodes by advancing one node at a
time (per round). As a result, covering the updates from all 200
nodes requires 150 training rounds. Finally, SESA achieves
comparable accuracy to the target benchmark with no resource
limitations, which is denoted as “full resource (target)”.

VII. CONCLUSION

In this work, we propose SA for submodel training for
networks with heterogeneous computation and communication
capabilities. Our framework ensures a personalized training
computation and communication load, adapted to the re-
source availability of the individual users, while guaranteeing
information-theoretic privacy for the local submodels.

2728



REFERENCES

[1] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Int. Conf. on Artificial Int. and Stat. (AISTATS), 2017, pp.
1273–1282.

[2] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” in Advances
in Neural Information Processing Systems (NeurIPS), 2019.

[3] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, “Inverting
gradients - how easy is it to break privacy in federated learning?” in
Advances in Neural Information Processing Systems (NeurIPS), 2020.

[4] H. Yin, A. Mallya, A. Vahdat, J. M. Alvarez, J. Kautz, and P. Molchanov,
“See through gradients: Image batch recovery via gradinversion,” in
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2021, pp. 16 332–16 341.

[5] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2017, pp. 1175–1191.

[6] J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and M. Raykova,
“Secure single-server aggregation with (poly) logarithmic overhead,” in
Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2020, pp. 1253–1269.

[7] J. So, C.-S. Yang, S. Li, Q. Yu, R. E Ali, B. Guler, and S. Avestimehr,
“Lightsecagg: a lightweight and versatile design for secure aggregation
in federated learning,” Proceedings of Machine Learning and Systems,
vol. 4, pp. 694–720, 2022.

[8] Y. Zhao and H. Sun, “Information theoretic secure aggregation with user
dropouts,” IEEE Transactions on Information Theory, vol. 68, no. 11,
pp. 7471–7484, 2022.

[9] H. U. Sami and B. Güler, “Secure aggregation for clustered federated
learning,” in IEEE International Symposium on Information Theory
(ISIT), 2023, pp. 186–191.

[10] ——, “Secure aggregation for clustered federated learning with passive
adversaries,” IEEE Transactions on Communications, 2024.

[11] C. He, M. Annavaram, and S. Avestimehr, “Group knowledge transfer:
Federated learning of large cnns at the edge,” in Advances in Neural
Information Processing Systems (NeurIPS), H. Larochelle, M. Ranzato,
R. Hadsell, M. Balcan, and H. Lin, Eds., 2020.

[12] Y. J. Cho, A. Manoel, G. Joshi, R. Sim, and D. Dimitriadis, “Het-
erogeneous ensemble knowledge transfer for training large models in
federated learning,” in Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence, IJCAI, 2022, pp. 2881–2887.

[13] S. Caldas, J. Konečný, H. B. McMahan, and A. Talwalkar, “Expanding
the reach of federated learning by reducing client resource require-
ments,” Arxiv, 2018.

[14] E. Diao, J. Ding, and V. Tarokh, “Heterofl: Computation and com-
munication efficient federated learning for heterogeneous clients,” in
International Conference on Learning Representations, ICLR, 2021.

[15] S. Alam, L. Liu, M. Yan, and M. Zhang, “Fedrolex: Model-
heterogeneous federated learning with rolling sub-model extraction,” in
Advances in Neural Information Processing Systems (NeurIPS), 2022.

[16] S. Horváth, S. Laskaridis, M. Almeida, I. Leontiadis, S. I. Venieris,
and N. D. Lane, “Fjord: Fair and accurate federated learning under
heterogeneous targets with ordered dropout,” in Advances in Neural
Information Processing Systems (Neurips), 2021, pp. 12 876–12 889.

[17] M. Kim and J. Lee, “Information-theoretic privacy in federated submodel
learning,” ICT Express, vol. 9, no. 3, pp. 415–419, 2023.

[18] S. Vithana and S. Ulukus, “Private read update write (PRUW) in
federated submodel learning (FSL): communication efficient schemes
with and without sparsification,” IEEE Trans. Inf. Theory, 2024.

[19] Z. Jia and S. A. Jafar, “X-secure t-private federated submodel learning
with elastic dropout resilience,” IEEE Trans. Inf. Theory, 2022.

[20] X. Lu and B. Güler, “Breaking the quadratic communication overhead
of secure multi-party neural network training,” in IEEE International
Symposium on Information Theory (ISIT), 2023, pp. 921–926.

[21] X. Lu, H. U. Sami, and B. Güler, “Dropout-resilient secure multi-party
collaborative learning with linear communication complexity,” in Pro-
ceedings of The 26th International Conference on Artificial Intelligence
and Statistics, ser. Proceedings of Machine Learning Research, vol. 206,
2023, pp. 10 566–10 593.

[22] X. Lu, H. U. Sami, and B. Güler, “Privacy-preserving collaborative
learning with linear communication complexity,” IEEE Transactions on
Information Theory, 2023.

[23] ——, “Scalr: Communication-efficient secure multi-party logistic re-
gression,” IEEE Transactions on Communications, vol. 72, no. 1, pp.
162–178, 2024.

[24] J. So, B. Guler, and A. S. Avestimehr, “Byzantine-resilient secure
federated learning,” IEEE Journal on Selected Areas in Comm., 2020.

[25] J. So, B. Güler, and S. Avestimehr, “A scalable approach for privacy-
preserving collaborative machine learning,” in Advances in Neural
Information Processing Systems (NeurIPS), 2020.

[26] Y. LeCun, C. Cortes, and C. Burges, “MNIST handwritten digit
database,” http://yann. lecun. com/exdb/mnist, 2010.

[27] S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečnỳ, H. B. McMahan,
V. Smith, and A. Talwalkar, “Leaf: A benchmark for federated settings,”
arXiv preprint arXiv:1812.01097, 2018.

[28] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konecny, S. Mazzocchi, H. B. McMahan et al.,
“Towards federated learning at scale: System design,” in 2nd SysML
Conf., 2019.

2729


