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ABSTRACT

Federated learning is a distributed framework for training a machi-
ne learning model over the data stored by wireless devices. A ma-
jor challenge in doing so is the communication overhead from the
devices to the server. Over-the-air federated learning is a recent fra-
mework to address this challenge, which utilizes the superposition
property of the wireless multiple access channel to enable compu-
tations to be performed in the wireless medium. Current over-the-
air aggregation frameworks, on the other hand, train a single model
for all users, which can degrade performance in heterogeneous en-
vironments where the data distributions of the users can differ from
one another. This work presents a personalized over-the-air federated
learning framework towards addressing this challenge. Our experi-
ments demonstrate significant performance improvement in terms of
the test accuracy over conventional federated learning.

Index Terms— Over-the-air machine learning, distributed trai-
ning, personalized federated learning

1. INTRODUCTION

Federated learning (FL) is a recent distributed learning framework to
train machine learning models over the massively distributed data in
wireless networks [1, 2]. Training in conventional FL is an iterative
process coordinated by a server who maintains a global model. At
each iteration, the server sends the current state of the global model
to the wireless devices (users), who then update the global model by
training on their local dataset. The local models are then aggregated
by the server to update the global model.

A major challenge in FL is the communication overhead of sen-
ding the local models from the users to the server, where the num-
ber of users and the model parameters can reach millions [3]. Over-
the-air FL has emerged as a recent framework towards addressing
this challenge, by utilizing the waveform superposition property of
a multi-access channel to perform over-the-air aggregation of local
model parameters, which can reduce the communication overhead
by a factor of the total number of users [4, 5, 6]. In contrast to
conventional FL where the server has to first reconstruct the local
models to perform the aggregation, over-the-air FL allows the local
models to be aggregated directly in the channel. Different user sche-
duling policies based on channel conditions and model updates can
further increase the communication and computational efficiency of
the system [7]. To ensure proper synchronization among the users, a
truncated channel inversion policy is proposed in [8, 9]. An optimal
power allocation strategy is proposed in [10] to further enhance the
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learning performance. Reference [11] utilizes noise perturbation in
over-the-air aggregation to improve privacy.

In most real-life FL scenarios, the dataset distributions of the
users vary from one another, in which case training a single mo-
del can lead to severe performance degradation for the individual
users [12, 13, 14]. Specifically, when the local datasets of the users
are non-i.i.d. (where i.i.d. stands for independent identically distri-
buted), the model tends to favor some of the users while heavily
degrading the performance of others [13]. Personalized FL is a re-
cent framework to address this data heterogeneity challenge in FL
systems [15, 16, 17, 18, 19, 12, 20]. To this end, [21] introduces a
proximal term in the local objective functions to minimize the di-
vergence among local updates, leading to higher accuracy than con-
ventional FL. Reference [22] incorporates a hierarchical clustering
algorithm to cluster the users based on the similarity of their lo-
cal updates. Users in each cluster perform FL independently, which
has been shown to improve accuracy in non-iid settings. References
[18, 19] leverage cosine similarity between the gradient updates of
each pair of users for clustering, to determine the proximity of local
optimizations. Reference [23] proposes an adaptive clustering tech-
nique where the number of clusters vary with time based on the ob-
served statistics. Reference [12] and [20] develop efficient clustering
techniques by training multiple models for different groups of users,
and assigning the users into the groups based on which group model
outputs the minimum loss over the users’ local data.

In this paper, we propose a personalized over-the-air federated
learning scheme. Our approach is motivated by clustered FL for per-
sonalization [12, 20], where # users are grouped into  clusters, and
a designated model is trained for each cluster. We then propose a MI-
MO encoder-decoder design where the encoding operation aligns the
transmitted waveforms for the local models belonging to the users in
the same cluster. The encoding operation also ensures that the aggre-
gate of the local models for each cluster can be decoded by the ser-
ver. While the proposed approach relies solely on the space dimensi-
ons and does not involve explicit frequency partitioning between the
users, our approach can also be combined with a frequency partitio-
ning scheme to increase the number of users sharing each subband.
To evaluate the performance of the proposed approach, we perform
experiments for image classification on the MNIST and CIFAR-10
datasets [24, 25] under heterogeneous (non-iid) data distributions for
the individual users. Our experiments demonstrate that the proposed
approach can significantly improve the performance of over-the-air
FL in terms of the test accuracy of individual users.

Our specific contributions are as follows:

1. We propose the first over-the-air personalized FL framework,
which can significantly reduce the communication latency of
personalized FL by allowing all users to share the same spec-
trum band for transmission.
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2. We develop a MIMO encoding-decoding design for persona-
lized FL, which aligns the local models received from users
belonging to different clusters in different subspaces over-the-
air, and enables the server to recover the aggregate of the local
models for each cluster.

3. We evaluate the performance of over-the-air aggregation in
terms of test accuracy of the individual users under the non-
iid data distribution setting and demonstrate that personalized
over-the-air aggregation can significantly outperform the per-
formance compared to conventional (non-personalized) over-
the-air aggregation.

2. SYSTEM MODEL

We consider a network with # wireless users and a single server.
User 8 ∈ [#] has a local dataset D8 consisting of |D8 | := �8 data
points. The users are heterogeneous in terms of their dataset distribu-
tion, where the local dataset of each user is realized from a class of  
distributions ?1, . . . , ? . The number of users whose local dataset is
distributed according to ?: is given by #: , where

∑
:∈[ ] #: = # .

In this work, we consider a personalized FL approach known
as clustered federated learning [12, 20], where users are partitioned
into  clusters and a global model w: is trained for each cluster : ∈
[ ]. The goal is to find the optimal model parameters {w: }:∈[ ]
to minimize a loss function,

min
w1 ,...,w 

∑
8∈[# ]

U8 min
:∈[ ]

�8 (w: ), (1)

where �8 (w: ) is the loss function of user 8 ∈ [#] evaluated over
the local dataset D8 , and U8 is a weight parameter assigned to user 8,
often set as U8 =

�8
�

where � =
∑
8∈[# ] �8 .

Training is carried out through an iterative process, where the
estimate of model w: at training round C is denoted by w: (C). At
each training round, the server broadcasts the current state of the
 global models {w: (C)}:∈[ ] to the users. Then, user 8 locally
computes the loss of each {w: (C)}:∈[ ] on its local datasetD8 , and
selects the cluster that minimizes the local loss, which is denoted as,

28C := arg min
:∈[ ]

�8 (w: (C)) (2)

and then locally updates the model w28C (C) through multiple stocha-
stic gradient descent (SGD) steps, creating a local model w8 (C) and
sends its local model to the server.

Finally, the server aggregates the local models from the users in
each cluster, to update the global models for the next training round,

w: (C + 1) =
∑
8∈SC

:

U8 (C)w8 (C) (3)

where
SC
:

:= {8 : 28C = : and 8 ∈ [#]} (4)

represents the set of users assigned to cluster : at training round C,
according to (2) and U8 (C) , �8∑

9∈SC28C
� 9

is the weight parameter of

user 8 at round C.
Note that the aggregation operation in (3) requires the server to

sum the local models corresponding to each cluster of users sepa-
rately. As such, a naive application of over-the-air aggregation, in
which all users would send their model parameters into the wireless
channel, would lead to the aggregation of local models belonging to

users from different clusters in the wireless medium. Accordingly,
the server would receive the sum of all user models, and would not
be able to distinguish the aggregate of the local models belonging to
different clusters.

In the following, we introduce an over-the-air personalized FL
framework to address this challenge, which enables all users to share
the spectrum while ensuring that the server can recover the aggregate
of the local models belonging to different clusters. For ease of expo-
sition, we assume that all the users have equal-sized datasets in the
sequel, i.e., �8 = �

#
for all 8 ∈ [#], for which (3) becomes,

w: (C + 1) = 1

|S (C)
:
|

∑
8∈SC

:

w8 (C) (5)

noting that our approach can be generalized without loss of genera-
lity when dataset sizes are different across the users, by letting each
user scale their local model according to U8 (C) before sending it to
the server.

3. OVER-THE-AIR PERSONALIZED FEDERATED
LEARNING

We consider a MIMO transmission model where each user is equip-
ped with #) transmitter antennas. In addition, we consider an access
point, integrated with the server, equipped with #' receiver anten-
nas. We represent the channel parameters from user 8 to the access
point with an #' × #) matrix H8 (C) at round C. We consider a Ray-
leigh channel where each element of H8 (C) for 8 ∈ [#] is i.i.d. from a
complex Gaussian distribution CN(0, f2). The channel varies from
one training round to another.

For each user 8, we define an #) × 3 dimensional encoding ma-
trix V8,: (C) for : ∈ [ ] at training round C. Given 28C ∈ [ ] from
(2), which denotes the cluster user 8 is assigned to at round C, user
8 encodes its local model w8 (C) by using the encoder V8,28C (C) and
transmits the encoded model V8,28C (C)w8 (C) to the channel. Due to
the superposition property of the wireless channel, the received si-
gnal at the access point is the summation of the signals transmitted
from all users. We denote the received signal at the access point with
an #' × 1 vector:

y(C) =
∑
8∈[# ]

H8 (C)V8,28C (C)w8 (C) + n(C) (6)

at round C, which can also be written as,

y(C) =
∑
:∈[ ]

∑
8∈SC

:

H8 (C)V8,: (C)w8 (C) + n(C) (7)

where n(C) represents the noise vector consisting of independent ze-
ro mean Gaussian random variables with E[n(C)n(C)) ] = I.

Upon receiving (7), the server decodes the aggregate of the local
models for each cluster to update the global models as shown in (5).
To do so, we define a 3 × #' decoding matrix U: for each cluster
: ∈ [ ]. Then, the decoding operation for cluster : is given by,

ẑ: (C) = U:y(C) (8)

where, ẑ: (C) is the estimate of the aggregate of the local models
assigned to cluster : , denoted by,

z: (C) ,
∑
8∈SC

:

w8 (C). (9)

8778

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 17,2024 at 20:34:55 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1 Over-the-Air Personalized Federated Learning

1: for each cluster : ∈ [ ] do
2: Initialize w: (0) ⊲ w: (C) is the global model of cluster : at

round C
3: for each round C = 1, 2, ...., ) do
4: for each client 8 ∈ [#] in parallel do
5: for : ∈ [ ] do
6: compute �8 (w: (C)) ⊲ loss function of user 8 on

global model of cluster :
7: cluster estimate 28C = argmin:∈[ ] �8

(
w: (C)

)
8: w8 (C + 1) ← CLIENTUPDATE(8,w28C (C))
9: encoding→ V8,28C (C)w8 (C)

10: Over-the-Air Aggregation:
11: y(C) = ∑

:∈[ ] A:z: (C) ⊲ Equation (13)
12: Server executes:
13: for : ∈  do
14: Decode cluster aggregate→ ẑ: (C) = U:y(C)
15: Update cluster global model→ w: (C+1) = 1

|S: (C) | ẑ: (C)
16: function CLIENTUPDATE(D,w)
17: for 8 = 1, ...., � do ⊲ � is the number of local updates
18: for uniformly random selected data sample Z8 ∈ D8 do
19: w← w − [∇� (w; Z8) ⊲ [ is the learning rate
20: return w

The key intuition behind our encoding-decoding scheme is to align
the models received from the same cluster in a way that enables the
server to recover the aggregate of the local models for each cluster,
using the received signal which corresponds to the sum of the signals
received from all users. To do so, we define,

A: = H8 (C)V8,: (C) ∀8 ∈ SC: (10)

where A: for : ∈ [ ] is an #' × 3 matrix, where each element is
generated i.i.d. according to a Gaussian distribution N(0, V2). Para-
meter V controls the average transmit power. The system of linear
equations in (10) has a solution if #) ≥ #' . Then, we define the
encoder of user 8 ∈ SC

:
as,

V8,: = H†
8
(C)A: (11)

where H†
8
(C) = H�

8
(H8 (C)H�8 (C))

−1 is the pseudo-inverse of H8 (C),
and H�

8
(C) is the Hermitian transpose of H8 (C), respectively. When

#) < #' , a solution to (10) does not exist, in which case one can
use a least-squares approach to jointly optimize A: and V8,: , which
we leave as future work. Using (10), equation (7) can be written as,

y(C) =
∑
:∈[ ]

A:
( ∑
8∈SC

:

w8 (C)
)
+ n(C) (12)

=
∑
:∈[ ]

A:z: (C) + n(C), (13)

and similarly (8) is given by,

ẑ: (C) = U:
∑
:∈[ ]

A:z: (C) + U:n(C). (14)

For the design of the decoder, we rewrite the first term in (13) as,∑
:∈[ ]

A:z: = A:̄z:̄ (C) + A:z: (C) (15)

where A:̄ ,
[
A1 · · · A:−1 A:+1 · · · A 

]
is an #' ×

( − 1)3 dimensional cascaded matrix of A 9 for 9 ∈ [ ] and 9 ≠ :

and z:̄ (C) ,
[
z1 (C) · · · z:−1 (C) z:+1 (C) · · · z (C)

]) is a
( −1)3×1 dimensional cascaded model vector where each element
is the aggregated model vector of cluster 9 ∈ [ ] and 9 ≠ : .

In order to decode the aggregate of the local models for cluster
: ∈ [ ], we design the decoder to satisfy the following two conditi-
ons,

U:A: = I (16)

and
U:A:̄ = 0. (17)

The constraint in (17) implies that U: should be in the null space
of A:̄ [26], from which we can define the decoder as:

U: =
(
(U>
:
)�A:

)−1
(U>
:
)� (18)

where [U0
:

U1
:
]Σ:B: is the SVD of A:̄ and U0

:
is a 3 × #' matrix

whose columns corresponds to a null-space basis of A:̄ . As such, the
decoder matrix from (18) satisfies both (16) and (17). Finally, note
that condition (17) can be stated as,

U:A1 = · · · = U:A:−1 = U:A:+1 = · · · = U:A = 0 (19)

from which, combined with (16) and (14), we have that,

ẑ: (C) = z: (C) + U:n(C) ∀: ∈ [ ] . (20)

The individual steps of our algorithm is provided in Algorithm 1.
We note that the number of required antennas can be further

reduced by leveraging gradient compression and sparsification tech-
niques. For instance, instead of sending the entire local model (of
size 3), users can adopt the allReduce rand-: sparsification scheme
[27] where users send only the model parameters corresponding to
: � 3 locations, where all users are assigned to the same set of :
random locations (assigned by the server), which also allows over-
the-air aggregation.

4. EXPERIMENTS

In our experiments, we consider an image classification task with
# = 25 users using the MNIST [24] and CIFAR-10 [25] datasets.
We consider a non-i.i.d. data distribution among the users, where the
local dataset of each user consists of the data samples corresponding
to two distinct labels. In particular, for both MNIST or CIFAR-10
datasets (both contain 10 labels), the training samples containing la-
bels {2 9 , 2 9 + 1} are distributed among users {5 9 , . . . , 5 9 + 4} for
9 = 0, . . . , 4. We set the total number of clusters to  = 5. We apply
the allReduce rand-: sparsification scheme in our experimental se-
tup to avoid using a large number of antennas at the transmitter and
receiver. The specific parameters used for our experimental setup are
demonstrated in Table 1.

In Fig. 1, we demonstrate the average test accuracy for the users
in each cluster, compared to the baseline conventional FL algorithm
[1] where a single global model is trained for all users. As shown in
Fig. 1, in the conventional setup, the average accuracy of the users in
all but one cluster are heavily degraded, hence a single global model
did not provide comparable performance for all users. In particu-
lar, the average accuracy of all clusters is 95.2% for our framework,
while the average accuracy for the baseline scheme is 86% percent,
hence our scheme leads to around 11% improvement in the test ac-
curacy.
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Table 1: Parameters used for the experimental setup

Parameters Value
Total number of users, # 25

Total number of clusters,  5
Number of model parameters, 3 (MNIST) 159010

Number of model parameters, 3 (CIFAR-10) 164954
Number of sparsified gradient parameters 3000

Number of transmitter antennas, #) 15000
Number of receiver antennas, #' 15000

Learning rate, [ 0.0001

#'size' : 18}

plt.rcParams.update({'font.size': 15})

matplotlib.rc('xtick', labelsize=18)

matplotlib.rc('ytick', labelsize=18)

#matplotlib.rc('font', **font)

plt.ylabel('Test Accuracy (%)')

plt.xlabel("# Iterations")

plt.legend()

plt.grid()

plt.show()

16

(a) Cluster 0.

17

(b) Cluster 1.

17

(c) Cluster 2.

18

(d) Cluster 3.

18

(e) Cluster 4.

Fig. 1: Test accuracy vs number of iterations (MNIST dataset)

As shown in Fig. 2, for the CIFAR-10 dataset, the discrepancy
observed in the performance is even higher. In the baseline scheme,
the average accuracy is around 45% whereas the average accuracy
for our proposed scheme is 74.2% after 140 iterations which indica-
tes 64.8% improvement over the test accuracy of baseline scheme.
In Fig. 3, we demonstrate the average test accuracy of the users over
all iterations versus signal to noise ratio (SNR), by varying the pa-
rameter V that controls the transmit power. As observed in Fig. 3, a
higher SNR leads to better robustness against noise and thus higher
accuracy.

5. CONCLUSION

We have proposed an over-the-air personalized federated learning
protocol for communication-efficient distributed learning under he-
terogeneous settings, in particular, when the users have non-i.i.d. da-
ta distributions. Our approach builds on a clustered federated lear-
ning approach and an encoder design that aligns the transmitted si-
gnals from the users belonging to the same cluster. Then, a zero-

plt.ylabel("Test Accuracy(%)")
plt.xlabel("# Iterations")
plt.grid()
plt.show()

plt.plot(range(len(cluster3_acc)),cluster3_acc,'r',label="Algorithm 1")
plt.plot(range(len(cluster3_acc2)),cluster3_acc2,'g',label="Baseline")
plt.legend()
plt.ylabel("Test Accuracy(%)")
plt.xlabel("# Iterations")
plt.grid()
plt.show()
plt.rcParams.update({'font.size': 15})
matplotlib.rc('xtick', labelsize=18)
matplotlib.rc('ytick', labelsize=18)
plt.plot(range(len(cluster4_acc)),cluster4_acc,'r',label="Algorithm 1")
plt.plot(range(len(cluster4_acc2)),cluster4_acc2,'g',label="Baseline")
plt.legend()
plt.ylabel("Test Accuracy(%)")
plt.xlabel("# Iterations")
plt.grid()
plt.show()

9

(a) Cluster 0.

10

(b) Cluster 1.

10

(c) Cluster 2.

11

(d) Cluster 3.

11

(e) Cluster 4.

Fig. 2: Test accuracy vs number of iterations (CIFAR-10 dataset)

[ ]:

2

(a) MNIST dataset
[ ]:

2

(b) CIFAR-10 dataset

Fig. 3: Average test accuracy of all users vs SNR

forcing decoder is designed for each cluster to null the interference
caused by the remaining clusters. We provide experiments on the
MNIST and CIFAR-10 datasets and demonstrate the performance
improvement over the federated learning benchmark. Future direc-
tions include enabling synchronization among the users to prevent
information leakage from individual local models.
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