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Secure Aggregation for Clustered Federated
Learning with Passive Adversaries

Hasin Us Sami Başak Güler

Abstract—Clustered federated learning is a popular paradigm
to tackle data heterogeneity in federated learning, by training
personalized models for groups of users with similar data distri-
butions. A critical challenge is to protect the privacy of individual
user updates, as the latter can reveal extensive information about
sensitive local datasets. To do so, a recent promising approach
is information-theoretic secure aggregation, where parties learn
the aggregate (sum) of user updates, but no further information
is revealed about the individual updates. In this work, we
present the first single-server secure aggregation framework in
the context of clustered federated learning, to learn the aggregate
of user updates for any clustering of users, but without learning
any information about the local updates or cluster identities. Our
framework can achieve linear communication complexity under
formal information-theoretic privacy guarantees, while providing
key trade-offs between communication and computation com-
plexity, adversary tolerance, and resilience to user dropouts.

Index Terms—Clustered federated learning, secure aggrega-
tion, distributed learning, coded computing.

I. INTRODUCTION

Federated learning (FL) is a distributed learning framework
to train machine learning models over the data stored and
processed locally across a large number of wireless devices
(users) [1]. Unlike traditional centralized training architectures,
where all data is collected by a central party who performs
training, FL keeps the data on device. Instead, each user
updates the trained model locally on their local data, and then
the local updates (e.g., gradients) are aggregated (often by
a central server) to form a global model. In doing so, users
always keep the data on device, and send only the intermediate
computations (e.g., local gradients).

Due to this on-device learning architecture (data never
leaves the device, but only the local updates are commu-
nicated), FL has been highly popular in privacy-sensitive
applications, such as healthcare. On the other hand, recent
gradient inversion attacks have shown that the local updates
sent by the users (such as gradients) can still reveal extensive
information about the local datasets [2–4]. Secure aggregation
(SA) protocols have been introduced to address this chal-
lenge, by revealing only the sum of the local updates to the
server during training, while hiding the contents of individual
updates sent from each user using information-theoretic or
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cryptographic tools [5–12]. In doing so, SA ensures that no
further information is revealed beyond the sum of the local
updates, preventing the server from associating the aggregated
updates with any particular user. SA can further be combined
with complementary privacy-preserving mechanisms such as
differential privacy [13], [14] and can even benefit the latter
[15], [16].

A major challenge of FL is the severe data heterogeneity
across the users, which slows down training, and degrades
model accuracy [17]. More importantly, training a single
model (across the entire network) may disproportionately
penalize the performance of underrepresented users [18]. Clus-
tered FL is a recent approach to tackle this challenge by
training multiple models, each adapted to a group of users
with similar data distributions [19–25]. The training process
alternates between clustering the users with respect to their
data distributions, and training a distinct model within each
cluster. For the latter, the server collects and aggregates the
local updates (gradients) from the users assigned to each
cluster, to update the model designated for that cluster. Sev-
eral complementary approaches also explore addressing data
heterogeneity by designing a personalized model for each
user through fine-tuning or meta-learning [26–29]. In contrast,
clustered FL targets group-level personalization, where the
server maintains personalized models to serve groups of users
with similar characteristics, while avoiding excessive memory
and storage costs to handle a large number of models.

In this work, our goal is to develop an SA framework for
clustered FL. A naive approach is to leverage conventional SA
protocols to aggregate the local gradients of the users assigned
to each cluster (independently from other clusters). On the
other hand, doing so requires the server to learn the cluster
identity of each user, which itself is highly sensitive infor-
mation, revealing which users have similar data distributions
[23]. An adversarial user can further infer sensitive information
about the characteristics of honest users assigned to the
same cluster, simply by leveraging the similarity between the
distributions. Importantly, underrepresented users are the most
vulnerable to these types of attacks, due to the lack of a large
number of honest users with similar data distributions, i.e.,
same cluster identity. Moreover, clusters may vary throughout
the training, using which one may reveal the local gradients by
comparing the aggregated updates received at different training
rounds [30]. As such, here we ask the following question:
• How can we enable SA for clustered FL, for the server

to learn the aggregate of local gradients for each cluster,
but without learning any information about the local
gradients or cluster identities of individual users?
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To address this challenge, in this work we propose the
first single-server SA frameworks for clustered FL. In all
proposed frameworks, the server can perfectly recover the
aggregate of local gradients for each cluster, but without
learning any further information about the cluster identities or
local gradients of the users. All proposed frameworks ensure
strong information-theoretic privacy guarantees, while provid-
ing a trade-off between the communication and computation
overhead, round complexity, and resilience to user dropouts
(e.g., due to poor channel conditions). Our contributions can
be summarized as follows:
• We propose SA in the context of clustered FL, where

the server aggregates the local gradients from multiple
clusters of users simultaneously, without learning any
information about the cluster identities or local gradients.

• We propose the first single-server SA framework for
clustered FL. By introducing an offline-online trade-off,
our framework can achieve a linear online communi-
cation complexity, while offloading the communication-
intensive operations to a data-agnostic offline phase.

• For all proposed frameworks, we demonstrate the for-
mal information-theoretic privacy guarantees and identify
the key performance trade-offs between the communica-
tion/computation overhead, privacy against adversaries,
round complexity, and resilience to user dropouts.

II. RELATED WORKS

For group-level personalization, a hierarchical clustering
approach is proposed in [19] by partitioning the users into clus-
ters according to the similarity of their local model updates,
and a distinct model is trained for each cluster. Reference
[20] determines the clusters according to the cosine similarity
between different local updates. References [21–23] propose
an alternating optimization approach, which alternates between
clustering users based on the similarity of their local data
distributions, and training a distinct model for each cluster.
Reference [24] considers the setting where local datasets
are from a mixture of distributions, whereas [25] considers
fairness across the clusters. In contrast, [26–29, 31] adopt a
user-level personalization approach. To this end, [32] adds a
proximal term to the local objectives to improve performance
in the presence of data heterogeneity. A multi-task learning
approach is proposed in [26] to simultaneously tackle data and
system heterogeneity. A meta-learning approach is proposed
in [27, 28, 31] to provide user-specific models based on local
dataset distributions.

Secure aggregation (SA) was introduced in [5, 6], where
the local gradients are obfuscated by pairwise additive random
masks. The masks cancel out upon aggregation, allowing the
server to recover the aggregate of the true gradients. While
these works focus on cryptographic security (against adver-
saries with bounded computational capability), more recent
works consider information-theoretic SA, where adversaries
have unbounded computational power [7–12]. To this end, [7]
proposes a circular aggregation strategy, whereas [8] intro-
duces a one-shot aggregation technique. Reference [9] con-
siders efficient randomness generation with low storage cost,

whereas [10] provides a trade-off between communication load
and active communication links, and [11] introduces resource-
aware SA with quantization.

These works are agnostic to the data heterogeneity across
users, and focus on training a single model. Concurrent work
[33] considers a two-server secure multi-party computing pro-
tocol to aggregate the local updates from different clusters of
users. However, unlike SA (which is based on a single-server
architecture), this work requires two honest (non-colluding)
servers who interact with the users and each other to carry
out a secure two-party protocol, but do not share any sensitive
information with each other in an attempt to breach user
privacy. In contrast, our goal is to develop a single-server
secure aggregation framework, to facilitate privacy-preserving
training architectures for clustered FL. Compared to the two-
server setting, the single server setting carry the additional
challenge where the aggregation is handled by a single server,
while still being able to keep the individual models and the
cluster identities of the users private.
Organization. The remainder of the paper is organized as
follows. Section III introduces the system model, Section IV
presents our frameworks. Sections V and VI provide the
theoretical analysis and experiments, respectively. Section VII
discusses extensions to different adversary models, and Sec-
tion VIII concludes the paper. Throughout the paper, x denotes
a scalar, x is a vector, X represents a matrix, and X denotes
a set, where [N ] is the set {1, . . . , N}.

III. PROBLEM FORMULATION

Clustered FL. We consider a distributed network of N users
and a server. The local dataset Di of user i ∈ [N ] is realized
from one of K distributions denoted by P1, . . . ,PK . The goal
is to train K models w1, . . . ,wK , where model wk ∈ Rd is
trained to minimize the loss function,

Fk(wk) , Eξ∼Pk
[f(wk, ξ)] ∀k ∈ [K], (1)

where ξ is a data sample realized from distribution Pk and
f(wk, ξ) denotes the stochastic loss function computed on the
data sample ξ and model wk. Then, the optimal model is given
by,

w∗k = arg minwk
Fk(wk) ∀k ∈ [K]. (2)

To solve (1), clustered FL [21–23] takes an iterative approach,
that alternates between partitioning the users into K clusters
with respect to the similarity of the local datasets, and training
K global models (one for each cluster). At each iteration t,
the server broadcasts the current state of the K global models
{wk(t)}k∈[K] to all users. Then, user i ∈ [N ] computes a
local empirical loss,

fi(wk(t)) ,
1

|Di|
∑
ξ∈Di

f(wk(t), ξ) (3)

for each model {wk(t)}k∈[K], and selects the cluster with the
minimum loss,

c
(t)
i , arg min

k∈[K]
fi(wk(t)). (4)
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Fig. 1. Secure aggregation for clustered FL. The server learns the aggregate
of the local gradients

∑
i∈Sk∩U gi(t) for each cluster k ∈ [K], without

learning which users belong to which cluster, or the local gradients gi(t) of
the individual users.

Next, user i ∈ [N ] computes a local gradient for the model of
the selected cluster,

gi(t) , ∇fi(wc
(t)
i

(t)) (5)

and sends the local gradient from (5), along with the cluster
index from (4), to the server. Then, the server updates the
global model for each cluster, by aggregating the local gradi-
ents received from users assigned to that cluster,

wk(t+ 1) = wk(t)− η

N

∑
i∈Sk(t)∩U(t)

gi(t) ∀k ∈ [K], (6)

where η is the learning rate, and Sk(t) , {i : c
(t)
i = k, i ∈

[N ]} denotes the set of users assigned to cluster k at iteration t.
At each training iteration, up to D out of N users may drop out
from the protocol due to various reasons, such as poor channel
conditions or low battery. Accordingly, U(t) ⊆ [N ] denotes
the set of surviving users at iteration t, who successfully send
their local gradient gi(t) to the server, where |U(t)| ≥ N−D.

Remark 1. The key intuition behind the clustered learning
mechanism is that when user datasets are sampled from K
different distributions, the optimal model for each distribution
should minimize the local loss for the corresponding users
[23]. Accordingly, at each training round, the clustering
mechanism identifies the group of users for which a given
(global) model performs the best, and then further updates
the model using the local datasets of the corresponding users.

Threat model. We consider an honest-but-curious (passive)
adversary model (as is the most common threat model in SA),
where adversaries follow the protocol, but try to reveal addi-
tional information about the local datasets of honest users from
the messages exchanged during training [7], [9]. Out of N
users, any set of up to T users can be adversarial. Adversarial
users may collude with each other, and the adversaries from
one cluster may collude with the adversaries from different
clusters. The server is also honest-but-curious and may collude
with the adversarial users.

Information-theoretic secure aggregation. Our goal is to
enable the server to compute the sum of the local gradients∑
i∈Sk(t)∩U(t) gi(t) for each cluster k ∈ [K], in order to

update the model from (6) correctly, but without learning any
further information about the local gradients or the cluster

identities of the users. Formally, this condition can be stated
as follows:

I
(
{gi(t), c(t)i }[N ]\T ;MT

∣∣∣{ ∑
i∈Sk(t)∩U(t)

gi(t)
}
k∈[K]

,

{gi(t), c(t)i }i∈T ,GT
)

= 0 (7)

for any set of adversarial users T such that |T | ≤ T , where
MT denotes the collection of all messages received by the
adversaries and the server, and GT is the set of randomness
generated by the adversaries during training. We then ask the
following question:
• How can the server compute the aggregate of local gra-

dients from (6) for all K clusters, under the information-
theoretic privacy guarantees from (7)?

To address this challenge, in this work we propose three
SA protocols, with different trade-offs in terms of communi-
cation/computation overhead, round complexity, and dropout
resilience. Similar to [5, 7, 9], our frameworks are bound to
finite field computations, where each user converts their local
gradient gi(t) ∈ Rd from the real domain to a finite field Fq of
integers modulo a large prime q. The details of this conversion
is provided in Appendix A. In the sequel, gi(t) ∈ Fdq denotes
the finite field representation of gi(t). All computations are
then performed in Fq . Our system model is illustrated in
Fig. 1. Similar to [7, 10, 34], we assume that there exists
direct (peer-to-peer) communication links between the users,
in addition to the user-to-server links. In scenarios where peer-
to-peer links are not available, one can utilize cryptographic
encryption mechanisms to forward all messages through the
server [5, 6].

We next present the details of our frameworks.

IV. CLUSTERED SECURE AGGREGATION

We next present three approaches to SA for clustered FL.
For notational clarity, we omit the iteration index t in our
exposition. In all frameworks, a new set of randomness is
generated at each training round. The randomness generation
in the offline phases can be carried out when the network load
is low, or can be overlapped with other components of training.

A. Clustered Secret Gradient Sharing (CSGS)

In our first framework, users encode their local gradients by
partitioning them into multiple shards, and combining them
with T random masks. Then, each user sends an encoded
gradient to every other user. The random masks hide the
true gradient and cluster identity against up to T adversaries,
while the encoding mechanism provides a trade-off between
communication complexity and resilience to user dropouts. We
next describe the details of this procedure.

Initially, the server generates N distinct public parameters
α1, . . . , αN independently and uniformly at random (without
replacement) from Fq , and sends them to the users prior to
training. Then, each user i ∈ [N ] partitions its local gradient
gi into L equal-sized shards,

gi =
[
gT
i1 · · · gT

iL

]T
, (8)
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and generates T independent (uniformly) random vectors
vi1, . . . ,viT ∈ F

d
L
q . Then, user i forms a degree KL+ T − 1

polynomial,

fi(α) ,
L∑
l=1

α(ci−1)L+l−1gil +

T∑
l=1

αKL+l−1vil, (9)

and sends to each user j ∈ [N ] a coded gradient,

g̃ij , fi(αj). (10)

In doing so, some users may drop out from the protocol and
fail to send their coded gradients. We denote the set of surviv-
ing users at the end of this stage (i.e., users who successfully
send their coded gradients from (10)) by U1 ⊆ [N ]. To recover
the aggregate of the local gradients of these surviving users,
the server then requests the aggregate of the coded gradients,

g̃i ,
∑
j∈U1

g̃ji (11)

from each user i ∈ [N ]. Note that the computations from
(11) can be viewed as evaluations of a degree KL + T − 1
polynomial,

f(α) ,
∑
j∈U1

fj(α) =
∑
k∈[K]

∑
l∈[L]

α(k−1)L+l−1
( ∑
j∈Sk∩U1

gjl

)

+

T∑
l=1

αKL+l−1
( ∑
j∈U1

vjl

)
(12)

at an interpolation point α = αi, where g̃i = f(αi). The set
of surviving users at the end of this stage (i.e., users who
successfully send the sum of the coded gradients in (11)) is
defined as U2, where U2 ⊆ U1 ⊆ [N ]. Since any polynomial
f of degree deg f can be uniquely reconstructed from at least
deg f + 1 evaluation points, upon receiving the evaluations
(11) from the users in U2, where |U2| ≥ KL + T , the server
can reconstruct the aggregate of the local gradients,∑

j∈Sk∩U1

gj =
[∑

j∈Sk∩U1 g
T
j1 · · ·

∑
j∈Sk∩U1 g

T
jL

]T
,

(13)
for each cluster k ∈ [K], using polynomial interpolation.
Parameter L controls a trade-off between communication com-
plexity and resilience to user dropouts. Specially, as will be
detailed in Section V, the communication overhead is O(dNL )
per user, which is inversely proportional to L, whereas the
maximum number of user dropouts that can be tolerated is
given as D ≤ N − (KL+ T ), which increases by selecting a
smaller L.

B. Clustered Masked Gradient Aggregation (CMGA)

Our second framework builds on an online-offline trade-off,
by dividing the communication into online (data-dependent)
and offline (data-agnostic) phases. The former depends on
the datasets, hence can only be carried out after training
starts. The latter is independent from data (such as randomness
generation), and can be carried out flexibly in advance when
the network load is low (accordingly, we assume that the user
dropouts occur in the online phase.). The key intuition is then
to transfer the intensive communication overhead incurred by

large N to the offline phase, by increasing the number of
communication rounds. As demonstrated next, one can achieve
an online communication overhead of O(dK) (independent
from the number of users) while keeping the offline overhead
as O(dNL ). We next describe the details of the offline and
online phases, respectively.
Offline. In the offline phase, the server generates N distinct
public parameters α1, . . . , αN independently and uniformly at
random (without replacement) from Fq , and sends them to
the users. User i ∈ [N ] then generates K random masks
{rik}k∈[K] of size d uniformly at random from Fq , and
partitions each mask into L equal-sized shards,

rik =
[
rT
ik1 · · · rT

ikL

]T
. (14)

Using the random masks generated, user i constructs a poly-
nomial of degree KL+ T − 1,

fi(α) ,
K∑
k=1

L∑
l=1

α(k−1)L+l−1rikl +

T∑
l=1

αKL+l−1vil, (15)

where vil ∈ F
d
L
q are generated uniformly at random for all

l ∈ [T ], and sends an encoded mask,

r̃ij , fi(αj) (16)

to each user j ∈ [N ]. The random masks {rik}k∈[K] will be
utilized to hide the true content of the local gradients in the
online phase, whereas the random vectors {vil}l∈[T ] will hide
the true value of the masks against up to T adversaries.
Online. In the online phase, each user i ∈ [N ] sends to the
server a masked gradient,

xik ,

{
gi + rik if i ∈ Sk

rik otherwise , (17)

for each cluster k ∈ [K]. We define U1 to represent the set
of users who successfully send their masked gradient from
(17) to the server. Then, the server aggregates the received
masked gradients {xik}i∈U1 from the surviving users U1, by
evaluating the sum

∑
i∈U1 xik for each cluster k ∈ [K]. On

the other hand, to recover the aggregate of the true gradients∑
i∈Sk∩U1 gi from the masked gradients

∑
i∈U xik, the server

has to remove the aggregate of the random masks
∑
i∈U1 rik

from the latter. To do so, the server requests the aggregate of
the coded masks,

r̃i ,
∑
j∈U1

r̃ji (18)

from each user i ∈ U1. The computations from (18) can be
viewed as evaluations of a degree KL+ T − 1 polynomial,

f(α) ,
∑
j∈U1

fj(α) =

K∑
k=1

L∑
l=1

α(k−1)L+l−1
( ∑
j∈U1

rjkl

)

+

T∑
l=1

αKL+l−1
( ∑
j∈U1

vjl

)
(19)

at an interpolation point α = αi, where r̃i = f(αi). We let U2
denote the set of users who successfully send the aggregate of
the coded masks in (18) to the server, where U2 ⊆ U1 ⊆ [N ].
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Then, upon receiving the evaluations in (18) from any set of
at least KL+T users, the server can reconstruct the aggregate
of the random masks,∑
i∈U1

rik =
[∑

i∈U1 r
T
ik1 · · ·

∑
i∈U1 r

T
ikL

]T
for k ∈ [K] (20)

via polynomial interpolation. Then, the server can recover
the aggregate of the true gradients for each cluster, by
removing the random masks in (20) from the masked gradients∑
i∈U1 xik as,∑

i∈Sk∩U1

gi =
∑
i∈U1

xik −
∑
i∈U1

rik for k ∈ [K]. (21)

CMGA achieves a per-user online communication overhead
of O(dK), by offloading the O(dNL ) (online) overhead of
CSGS to the offline phase, while providing equal resilience
against user dropouts D ≤ N − (KL + T ). On the other
hand, when the number of clusters K is large, as is often the
case in highly heterogeneous networks, the O(dK) overhead is
still significant. Our next framework overcomes this challenge
by reducing the online overhead to O(d + K), achieving a
linear communication complexity in both the model size d and
the number of clusters K, by trading-off the communication
overhead with tolerance to user dropouts.

C. Secure Aggregation with Masked Clusters (SAMC)

Our last framework also builds on an online/offline trade-
off, where we offload the communication intensive operations
to the offline phase. On the other hand, instead of aggregating
the masked gradients for each cluster, each user now sends a
one-shot masked gradient along with a masked cluster identity.
The two are then combined with encoded random masks
generated in the offline phase, in a way that the server can
correctly recover the sum of the true gradients for each cluster,
without learning any information about their true value. We
next describe the details of the offline and online phases.
Offline. In this phase, users generate three Lagrange inter-
polation polynomials, where the first two will be used to
mask the local gradients and cluster identities in the online
phase, while the third one will be used to ensure information
theoretic privacy during the final reconstruction of the sum of
local gradients. Initially, the server generates 2(N + KL +
T )− 1 distinct public parameters {αi}i∈[N ], {βm}m∈[KL+T ],
{θm}m∈{KL+1,...,2(KL+T−1)+1}, and {λm}m∈[N−T ] inde-
pendently and uniformly at random (without replacement)
from Fq , and sends them to the users. Next, each user i ∈ [N ]
generates a random mask,

ri ,
[
rT
i1 · · · rT

iL

]T
, (22)

where ril ∈ F
d
L
q for all l ∈ [L] are generated uniformly at

random (and independently from other elements), and then
forms a Lagrange polynomial of degree KL+ T − 1,

fi(α) ,
∑
l∈[L]

ril
∑
k∈[K]

∏
m∈[KL+T ]
\{(k−1)L+l}

α− βm
β(k−1)L+l − βm

+

KL+T∑
l=KL+1

vil
∏

m∈[KL+T ]\{l}

α− βm
βl − βm

, (23)

where vil ∈ F
d
L
q are uniformly random vectors for all l ∈

{KL + 1, . . . ,KL + T}, where each element is generated
independently from the other elements. Then, user i sends an
encoded mask,

r̃ij , fi(αj) (24)

to each user j ∈ [N ]. In addition, user i generates K random
masks zi1, . . . , ziK ∈ Fq (uniformly at random), forms a
second Lagrange polynomial of degree KL+ T − 1,

hi(α) ,
∑
k∈[K]

zik
∑
l∈[L]

∏
m∈[KL+T ]
\{(k−1)L+l}

α− βm
β(k−1)L+l − βm

+

KL+T∑
l=KL+1

uil
∏

m∈[KL+T ]\{l}

α− βm
βl − βm

, (25)

where uil ∈ Fq are generated uniformly at random for all
l ∈ {KL+1, . . . ,KL+T}, and sends an encoded mask,

z̃ij , hi(αj) (26)

to user j ∈ [N ]. Finally, user i generates a third Lagrange
polynomial of degree 2(KL+ T − 1),

vi(α) ,
2(KL+T−1)+1∑

l=KL+1

nil
∏

m∈[2(KL+T−1)+1]\{l}

α− θm
θl − θm

(27)

where θl , βl for l ∈ [KL], and nil is a random vector of size
d

L(N−T ) for l∈{KL+1, . . . , 2(KL+T −1)+1}, where each
element is generated independently and uniformly at random
from Fq . User i then sends an encoded vector,

ñij , vi(αj) (28)

to user j ∈ [N ]. After receiving {ñji}j∈[N ], user i computes,

ñi ,
[∑

j∈[N ] λ
j−1
1 ñT

ji · · ·
∑
j∈[N ] λ

j−1
N−T ñ

T
ji

]T
(29)

which can be viewed as evaluations of a Lagrange polynomial
v(α) of degree 2(KL+ T − 1),

v(α) ,
2(KL+T−1)+1∑

l=KL+1

nl
∏

m∈[2(KL+T−1)+1]\{l}

α− θm
θl − θm

(30)

such that the computation at user i ∈ [N ] is given by ñi =
v(αi), whereas v(θl) = 0 for all l ∈ [KL]. Hence, the first
KL coefficients are equal to 0, and

v(θl) = nl =
[∑

j∈[N ] λ
j−1
1 nT

jl · · ·
∑
j∈[N ] λ

j−1
N−Tn

T
jl

]T

(31)
for all l ∈ {KL+ 1, . . . , 2(KL+ T − 1) + 1}.
Online. In the online phase, each user i ∈ [N ] initially
broadcasts a masked local gradient,

xi , gi − ri (32)

along with a masked cluster index for each cluster k ∈ [K],

yik , bik − zik, (33)

where bik is a binary indicator variable,

bik ,

{
1 if i ∈ Sk
0 otherwise (34)
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representing whether user i is assigned to cluster k ∈ [K].
Let U1 ⊆ [N ] denote the set of surviving users at the end of
this stage, i.e., users who successfully send their masked local
gradient and cluster index from (32) and (33). To reconstruct
the aggregate of local gradients, the server requests from the
surviving users i ∈ U1,

ãi ,
∑
j∈U1

( ∑
k∈[K]

yjk
∑
l∈[L]

∏
m∈[KL+T ]
\{(k−1)L+l}

αi−βm
β(k−1)L+l−βm

+z̃ji

)

×
( ∑
l∈[L]

xjl
∑
k∈[K]

∏
m∈[KL+T ]
\{(k−1)L+l}

αi−βm
β(k−1)L+l−βm

+r̃ji

)
−ñi (35)

where the masked gradient xj =
[
xT
j1 · · · xT

jL

]T
is parti-

tioned into L equal-sized shards. The computations from (35)
can be viewed as evaluations of a degree 2(KL + T − 1)
polynomial,

f(α) ,
( ∑
j∈U1

φj(α)ψj(α)
)
− v(α) (36)

such that ãi = f(αi), and

φj(α) ,
∑
k∈[K]

bjk
∑
l∈[L]

∏
m∈[KL+T ]
\{(k−1)L+l}

α− βm
β(k−1)L+l − βm

+

KL+T∑
l=KL+1

ujl
∏

m∈[KL+T ]\{l}

α− βm
βl − βm

, (37)

ψj(α) ,
∑
l∈[L]

gjl
∑
k∈[K]

∏
m∈[KL+T ]
\{(k−1)L+l}

α− βm
β(k−1)L+l − βm

+

KL+T∑
l=KL+1

vjl
∏

m∈[KL+T ]\{l}

α− βm
βl − βm

, (38)

where gj =
[
gT
j1 · · · gT

jL

]T
denotes the local gradient

of user j partitioned into L equal-sized shards. We denote
the set of surviving users who successfully send their local
computation from (35) to the server as U2, where U2 ⊆ U1 ⊆
[N ]. Since f(β(k−1)L+l) =

∑
j∈U1 bjkgjl =

∑
j∈Sk∩U1 gjl

correspond to the true sum of the local gradients for each
cluster k ∈ [K] and shard l ∈ [L], after receiving the local
computations (35) from any set of at least 2(KL+T −1) + 1
users, the server can reconstruct f(α) through polynomial
interpolation, and recover the sum,∑
j∈Sk∩U1

gj =
[
f(β(k−1)L+1)T · · · f(β(k−1)L+L)T

]T
(39)

of the local gradients for each cluster k ∈ [K].

Remark 2. SAMC reduces the per-user online communication
overhead to O(d + K) (down from the O(Kd) overhead of
CMGA), while keeping the offline overhead the same. This is
achieved by a trade-off between communication overhead and
dropout resilience; SAMC slashes the online communication
complexity, while requiring a larger number of surviving users
for correct recovery of aggregated gradients. A comparison of

TABLE I
COMPARISON OF COMMUNICATION COMPLEXITY (PER-USER) AND

DROPOUT RESILIENCE (MAXIMUM NUMBER OF USER DROPOUTS) FOR THE
THREE FRAMEWORKS.

Communication complexity Dropout resilience

CSGS online O(dN/L)
D ≤ N − (KL+ T )offline −

CMGA online O(dK)
D ≤ N − (KL+ T )offline O(dN/L)

SAMC online O(d+K)
D ≤ N − 2(KL+ T ) + 1offline O(dN/L)

the communication complexity and dropout resilience of the
three frameworks is given in Table I, which will be further
detailed in Section V.

Remark 3. The key intuition behind the polynomial v(α)
in (36) is to ensure privacy during the reconstruction of the
final outcomes by the server. Since v(β(k−1)L+l) = 0 for all
k ∈ [K], l ∈ [L], in principle, the final outcomes in (39) can be
recovered by interpolating the polynomial

∑
j∈U1 φj(α)ψj(α)

directly, by collecting the evaluations
∑
j∈U1 φj(αi)ψj(αi)

from the users, however, additional information may be leaked
(beyond the desired outcomes) from the intermediate polyno-
mial coefficients. The masking with ñi = v(αi) prevents such
information leakage, as will be demonstrated in Theorem 4.

V. THEORETICAL ANALYSIS

We first analyze the per-user communication/computation
complexity, privacy against adversaries, and resilience to user
dropouts. The dropout resilience of a given framework is
quantified by the recovery threshold, defined as the minimum
number of surviving users required for correct recovery of the
aggregate of local gradients.

Theorem 1. CSGS has a per-user communication complexity
O(dNL ), per-user computation complexity O(dNL log2(KL +
T ) log log(KL+ T )), and a recovery threshold of N −D ≥
KL+ T .

Proof. (Communication) The per-user communication over-
head consists of: 1) O(dNL ) for sending the encoded gradient
from (10) to N users, 2) O( dL ) for sending (11) to the server.

(Computation) Interpolating a polynomial of degree κ, and
evaluating it at κ points has a computational complexity of
κ log2 κ log log κ [35]. Then, the per-user computation over-
head consists of: 1) O(dNL log2(KL + T ) log log(KL + T ))
for evaluating the polynomial of degree KL + T − 1 from
(10) at N evaluation points, 2) O(|U1| dL ) for aggregating the
coded vectors received from the surviving users in (11).

(Recovery threshold) To recover the aggregate of the local
gradients from (13), the server has to reconstruct the degree
KL + T − 1 polynomial f(α) from (12), which requires the
evaluations from any set of at least KL+ T surviving users,
leading to a recovery threshold N −D ≥ KL+ T .

Theorem 2. CMGA has a per-user communication complexity
of O(dK) online and O(dNL ) offline, per-user computation
complexity of O(dNL ) online and O(dNL log2(KL+T ) log log
(KL + T )) offline, and a recovery threshold of N − D ≥
KL+ T .
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Proof. (Communication) The per-user communication over-
head consists of the following components. (Online): 1)
O(dK) for sending (17) to the server, 2) O( dL ) for sending
(18) to the server. (Offline): O(dNL ) for sending the coded
masks from (16) to N users.

(Computation) The per-user computation overhead consists
of the following components. (Online): 1) O(d) for computing
the masked gradient in (17), 2) O(|U1| dL ) for aggregating the
masks in (18). (Offline): O(dNL log2(KL + T ) log log(KL +
T )) to evaluate the degree KL+T − 1 polynomial from (15)
at N points.

(Recovery threshold) To recover the aggregated gradients,
the server interpolates the degree KL+T−1 polynomial f(α)
from (19), which requires evaluations from N−D ≥ KL+T
surviving users.

Theorem 3. SAMC has a per-user communication complexity
of O(d + K) online and O(dNL ) offline, along with a per-
user computational complexity O(N(K + d)) online and
O(dNL log2(KL+T ) log log(KL+T )) offline, and a recovery
threshold of N −D ≥ 2(KL+ T )− 1.

Proof. (Communication) The per-user communication over-
head consists of the following. (Online): 1) O(d) for broad-
casting the masked gradient (32), 2) O(K) for broadcasting
the masked cluster identity (33), 3) O( dL ) for sending (35) to
the server. (Offline): 1) O(dNL ) for sending (24) to N users, 2)
O(N) for sending (26) to N users, 3) O( dN

L(N−T ) ) for sending
(28) to N users.

(Computation) The per-user computation overhead consists
of the following components. (Online): 1) O(d) for computing
the masked local gradient from (32), 2) O(K) for comput-
ing the masked cluster assignments in (33), 3) O(|U1|(K +
d)) for computing (35). (Offline): 1) O(dNL log2(KL +
T ) log log(KL + T )) for evaluating the polynomial fi(α)
of degree KL + T − 1 from (23) at N evaluation points,
2) O(N log2(KL + T ) log log(KL + T )) for evaluating the
polynomial hi(α) of degree KL+T−1 from (25) at N points,
3) O( dN

L(N−T ) log2(KL+T ) log log(KL+T )) for evaluating
the polynomial vi(α) of degree 2(KL+ T − 1) from (27) at
N points, 4) O(dNL ) for computing ñi from (29).

(Recovery threshold) To aggregate the local gradients, the
server interpolates the degree 2(KL+T −1) polynomial from
(36), using the evaluations (35) of N−D ≥ 2(KL+T−1)+1
surviving users.

Remark 4. The three frameworks provide a trade-off between
the online/offline communication complexity, computation cost,
and recovery threshold. CMGA reduces the online commu-
nication overhead of CSGS by introducing an offline phase.
SAMC reduces the online communication by a factor of K
compared to CMGA, while increasing the recovery threshold
by a constant factor.

Remark 5. There is a fundamental trade-off between the
privacy against adversaries (T ) and dropout resilience (D)
in a given network of size N , characterized by the recovery
threshold, where one has to decrease T in order to increase
D (and vice versa). For both CSGS and CMGA, the maximum

number of user dropouts that can be tolerated is given by
D ≤ N −KL − T from the recovery threshold. As a result,
increasing the adversary tolerance T by 1 comes at a cost
of reduced dropout resilience D by 1. On the other hand, for
SAMC, the maximum number of user dropouts that can be
tolerated is D ≤ N + 1 − 2KL − 2T , hence increasing the
adversary tolerance T by 1 comes at a cost of reducing the
dropout resilience D by 2.

We next demonstrate the information-theoretic privacy guar-
antees from (7) for all the three frameworks.

Theorem 4. (Information-theoretic privacy) All three frame-
works CSGS, CMGA, and SAMC provide information-theoretic
privacy guarantees from (7) against any set T of up to
|T | ≤ T adversarial users,

I

(
{gi, ci}[N ]\T ;MT

∣∣∣{ ∑
i∈Sk∩U1

gi

}
k∈[K]

,{gi, ci}i∈T ,GT
)

=0

(40)

whereMT denotes the collection of all messages received by
the server and adversarial users during the protocol, and GT
is the set of randomness generated by the adversarial users.

Proof. The proof is provided in Appendix B.

Remark 6. An upper bound on the mutual information be-
tween the local dataset of user i ∈ Sk(t) and the gradient
aggregate for cluster k ∈ [K] can be obtained from [36,
Theorem 1] as,

I

(
Di;

∑
i∈Sk(t)∩U1(t)

gi(t)

∣∣∣∣{ ∑
i∈Sk(j)∩U1(j)

gi(j)
}
j∈[t−1]

)

≤ O
(

1

Nk(t)B

)
where Nk(t) , |Sk(t) ∩ U1(t)|, and B is the batch size for
local training at the users. Accordingly, a larger cluster size
(i.e., larger number of users within a cluster) reduces the
information leakage from the aggregated gradients.

VI. EXPERIMENTS

In this section, we evaluate the performance of our frame-
works with respect to key performance measures; communi-
cation overhead, dropout tolerance, and model accuracy.
Setup. We consider clustered FL for image classification on
the MNIST [37] and CIFAR-10 [38] datasets. Each user holds
a local dataset sampled from one of K source distributions,
where the data samples for each source distribution are real-
ized from two distinct classes. Specifically, for both MNIST
and CIFAR-10 datasets, which contain 10 classes, the data
samples with labels {2j, 2j + 1} are distributed uniformly
at random across the users {10j + 1, . . . , 10j + 10} for
j = 0, . . . , 4. Training is then performed using the CNN
architectures from [1], where the number of model parameters
is d = 21840 for MNIST and d = 62006 for CIFAR-
10. The maximum number of adversarial and dropout users
are T = D = bN−36 c. For user dropouts, we consider the
worst-case scenario for training, where maximum number of
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(a) Cluster 1. (b) Cluster 2. (c) Cluster 3. (d) Cluster 4. (e) Cluster 5.

Fig. 2. Test accuracy vs number of iterations (MNIST dataset).

(a) Cluster 1. (b) Cluster 2. (c) Cluster 3. (d) Cluster 4. (e) Cluster 5.

Fig. 3. Test accuracy vs number of iterations (CIFAR-10 dataset).

dropouts occur in the first round of online communication,
i.e., |U1| = |U2| = N − D, as a result, the local gradients
of the dropped users do not contribute to the global model at
that iteration. At each iteration, D users drop out uniformly
at random. The remaining hyperparameters are L = 3,
η = 0.001, and q = 232 − 5.
Model accuracy. We first evaluate the performance of our
frameworks in terms of the test accuracy, with respect to the
clustered FL benchmark (clustered FL without SA) from [23],
which serves as our target accuracy, and the conventional (non-
clustered) FL benchmark (FedAvg) from [1]. The accuracy
of our frameworks is depicted as clustered FL with SA, as
all our frameworks preserve the correctness of the secure
computations, leading to the same final result. In Figs. 2
and 3, we report the average test accuracy of the users
within each cluster for the MNIST and CIFAR-10 datasets,
respectively. Our frameworks (clustered FL with SA), where
the local gradients are aggregated in the finite field, achieve
comparable test accuracy to the target benchmark (clustered
FL without SA). In Fig. 2, we observe that clustered FL
(with or without SA) achieves an average accuracy of 99%
across all clusters, whereas FedAvg achieves 81.7% accuracy
on average with a worst case accuracy of 48.1% (cluster 5).
The performance improvement is even more significant for
CIFAR-10 as observed in Fig. 3, where clustered FL (with or
without SA) achieves an average accuracy of 87.8%, compared
to the 46.91% accuracy of FedAvg.
Communication overhead. In Fig. 4(a), we compare the
total online communication overhead (across all users) for the
proposed frameworks with varying N while letting K = 5,
and L = 3. We observe that CMGA significantly reduces
the online communication overhead compared to CSGS, by
up to 15.8× since the intensive point-to-point communication
overhead is transferred to the offline phase. The commu-
nication overhead is further reduced by SAMC by 4.12×
since the overhead of SAMC is O(N(K + d)), compared to

the O(NKd) overhead of CMGA . In Fig. 4(b), we further
observe the impact of the multiplicative factor K on the per-
user online communication overhead of CMGA, by letting
N = 200, and varying K. We then set L accordingly to
satisfy the recovery threshold L = N−D−T

K for CSGS and

CMGA, and L =
N−D−1

2 −T+1

K for SAMC. As K increases,
the communication overhead of CMGA increases linearly (as d
is fixed), while having negligible impact on the communication
overhead of SAMC (since d >> K). As such, SAMC reduces
the per-user online communication overhead by up to 15.1×
compared to CMGA.
Dropout tolerance. In Fig. 4(c), we illustrate the maximum
number of user dropouts that can be tolerated by each frame-
work with varying number of users N , while keeping K and
L fixed (K = 5, L = 3). We observe that CSGS and CMGA
achieve a higher dropout tolerance compared to SAMC, which
again reflects the trade-off between the dropout resilience and
online communication overhead for the three frameworks.
Membership inference attacks. In Fig. 5, we demonstrate
the impact of membership inference attacks [39] on the global
model trained for each cluster (on CIFAR-10). Similar to [39–
41], we consider a worst case scenario and perform the attack
on the final model obtained for each cluster, as the attack
performs better in the latter rounds of training (when models
start to overfit to training data). Following [39], we report the
attack performance in terms of precision, by measuring the
fraction of samples interpreted as members that are actually
members of the training dataset. In Fig. 5 we demonstrate
the attack performance with varying number of users per
cluster, with 500 data points per user, sampled from two
distinct classes for each cluster. We observe that the attack
performance degrades as the cluster size increases.

VII. DISCUSSION

In this work, we focus on the honest-but-curious (passive)
adversary model, as a first step for understanding more capa-
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(a) Total online communication over-
head with varying number of users
(per training iteration).

(b) Per-user online communication
overhead with varying number of
clusters (per training iteration).

(c) Dropout tolerance for varying
number of users.

Fig. 4. Performance comparisons for the three frameworks in terms of the communication overhead (with respect to the number of users and clusters) and
dropout resilience (with respect to the number of users) on the MNIST dataset.

(a) Cluster 1. (b) Cluster 2. (c) Cluster 3. (d) Cluster 4. (e) Cluster 5.

Fig. 5. Membership inference attack on the gradient aggregate of the clusters.

ble active (malicious) adversaries [42]. An interesting future
direction is to extend our frameworks to the latter, who can
modify the messages exchanged during protocol execution.
One approach to achieve this is by leveraging Byzantine-
resilient and verifiable secure multi-party computing mech-
anisms [42]. Verifiable secret sharing frameworks can ensure
the correctness of the encoded messages sent from each user
to the other parties [43]. The correctness of the polynomial
computations sent from the users to the server, on the other
hand, can be ensured by Reed-Solomon decoding, which can
correctly identify the errors in the polynomial evaluations sent
from the users to the server [44]. To ensure correct decoding
in a network with up to A active adversaries, Reed-Solomon
decoding requires two messages per error, hence the server
needs 2A additional evaluations from the surviving users.

In addition to the encoding/decoding protocol, adversaries
can also target the machine learning/training mechanism, by
modifying their local datasets to inject unwanted behaviour
into the global model [45]. Defending against such attacks
requires secure outlier detection mechanisms as the local
gradients are hidden during training (to preserve privacy),
where local gradients from different users are compared with-
out revealing their true value, and then outliers are removed
during the aggregation of the local gradients at the server [42].
For clustered FL, doing so requires effective mechanisms for
distinguishing the outliers that emerge from adversarial attacks
from those that emerge from data heterogeneity.

VIII. CONCLUSIONS

In this work, we propose SA for clustered FL, to aggregate
the local gradients for any cluster of users, without learning
any information about the local gradients or cluster identities

of the users. Our framework can achieve linear communica-
tion complexity, while ensuring formal information-theoretic
privacy guarantees. Future directions include extending our
mechanisms to active (malicious) adversaries who can modify
the messages or datasets adversarially [42], and integrating
our frameworks with authenticated key agreement mecha-
nisms to ensure the integrity and authenticity of the messages
exchanged against malicious adversaries. Another interesting
direction is to further enhance the computational efficiency by
offloading the computational overhead of polynomial interpo-
lations to the offline phase, by leveraging trusted execution
environments or crypto-service providers [46].

APPENDIX A
FINITE FIELD REPRESENTATIONS

The local gradient gi of user i is represented in the finite
field Fq as gi , ρ(gi) mod q, using a stochastic quantization
function [42, 47],

ρ(x) ,

{
blxc with probability 1− (lx− blxc)
blxc+ 1 with probability lx− blxc

(41)
operating element-wise, where l controls the quantization loss
(set to 220 in the experiments), and the modulo operation maps
the negative integers in the second half of the finite field. Prime
q is selected large enough to avoid a wrap-around which may
cause overflow errors. After recovering the aggregate of the
gradients for each cluster, the server updates the models,

wk ← wk −
η

Nl
ρ−1

( ∑
i∈Sk∩U

gi

)
∀k ∈ [K] (42)
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where ρ−1 : Fq → R is a demapping function that converts
the gradients back to the real domain,

ρ−1(x̄) =

{
x̄ if 0 ≤ x̄ < q−1

2

x̄− q if q−1
2 ≤ x̄ ≤ q

(43)

APPENDIX B
INFORMATION-THEORETIC PRIVACY

We now demonstrate the information-theoretic privacy of
each framework against any set T of |T | = T adversarial
users (the proof for any |T | < T follows the same steps). The
set of honest users is denoted by H = [N ]\T . Without loss of
generality, we let T = [T ], as the same analysis holds for any
set T ⊂ [N ] of size T . For the analysis, we consider the worst-
case scenario where all messages are communicated across
the users, i.e., users declared as dropped are only delayed,
and their messages are eventually received by the adversaries
[9]. The number of surviving users at the final communication
round, denoted by |U2|, is assumed to be equal to the recovery
threshold of the corresponding framework (the same analysis
also holds for a larger number of surviving users). We next
demonstrate the privacy analysis for each framework.

CSGS. For this framework, the mutual information condition
in (40) can be written as,

I({gi, ci}i∈H; {g̃i}i∈U2 , {g̃ij}i∈[N ]
j∈T

, {αi}i∈[N ]|

{
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T , {vil}i∈T ,l∈[T ])

= I({gi, ci}i∈H; {g̃i}i∈U2 , {g̃ij}i∈[N ]
j∈T
|{

∑
i∈Sk∩U1

gi}k∈[K],

{gi, ci}i∈T , {vil}i∈T ,l∈[T ], {αi}i∈[N ]) + I({gi, ci}i∈H;

{αi}i∈[N ]|{
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T , {vil}i∈T ,l∈[T ])

(44)

= I({gi, ci}i∈H; {g̃i}i∈U2 , {g̃ij}i∈[N ]
j∈T
|{

∑
i∈Sk∩U1

gi}k∈[K],

{gi, ci}i∈T , {vil}i∈T ,l∈[T ], {αi}i∈[N ]) + 0 (45)

= H({g̃i}i∈U2 , {g̃ij}i∈H
j∈T
|{

∑
i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T ,

{vil} i∈T
l∈[T ]

, {αi}i∈[N ])−H({g̃i}i∈U2 , {g̃ij}i∈H
j∈T
|

{
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈[N ], {vil} i∈T
l∈[T ]

, {αi}i∈[N ]) (46)

where (44) follows from the chain rule of mutual information,
and (45) holds since the public parameters {αi}i∈[N ] are
generated independently from the locally generated gradients
and random masks, (46) follows from the chain rule of entropy
and the fact that there is no uncertainty in {g̃ij}i∈T

j∈T
given

{vil} i∈T
l∈[T ]

, {gi, ci}i∈T . For the second term in (46), we have,

H({g̃i}i∈U2 , {g̃ij}i∈H
j∈T
|{

∑
i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈[N ],

{vil} i∈T
l∈[T ]

, {αi}i∈[N ])

= H({g̃i}i∈U2 |{
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈[N ], {vil} i∈T
l∈[T ]

,

{g̃ij}i∈H
j∈T

, {αi}i∈[N ]) +H({g̃ij}i∈H
j∈T
|{

∑
i∈Sk∩U1

gi}k∈[K],

{gi, ci}i∈[N ], {vil} i∈T
l∈[T ]

, {αi}i∈[N ]) (47)

= H({
∑

i∈Sk∩U1

gi}k∈[K], {
∑
i∈U1

vil}l∈[T ]|{
∑

i∈Sk∩U1

gi}k∈[K],

{gi, ci}i∈[N ], {vil} i∈T
l∈[T ]

, {g̃ij}i∈H
j∈T

, {αi}i∈[N ])

+H({vil} i∈H
l∈[T ]
|{

∑
i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈[N ],

{vil} i∈T
l∈[T ]

, {αi}i∈[N ]) (48)

= H({
∑
i∈U1

vil}l∈[T ]|{
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈[N ],

{vil} i∈T
l∈[T ]

, {g̃ij}i∈H
j∈T

, {αi}i∈[N ]) +H({vil} i∈H
l∈[T ]

) (49)

= 0 +H({vil}i∈H,l∈[T ]) (50)

= (N − T )T
d

L
log q (51)

where (47) is from the chain rule. By denoting U2 =
{U1, . . . , UKL+T },[

g̃U1 · · · g̃UKL+T

]
=
[ ∑
i∈S1∩U1

gi1
∑

i∈S1∩U1

gi2 · · ·∑
i∈SK∩U1

giL
∑
i∈U1

vi1 · · ·
∑
i∈U1

viT

]
Q (52)

where Q is a (KL+T )×(KL+T ) MDS (maximum distance
separable) matrix,

Q ,

1 αU1
· · · αKL−1U1

αKLU1
· · · αKL+T−1U1

...
...

. . .
...

...
. . .

...
1 αUKL+T

· · · αKL−1UKL+T
αKLUKL+T

· · · αKL+T−1UKL+T


T

hence {g̃i}i∈U2 is invertible to {
∑
i∈Sk∩U1gil}k∈[K],l∈[L],

{
∑
i∈U1vil}l∈[T ], from which (48) follows. Equation (49)

holds since {vil}i∈H,l∈[T ] is generated uniformly at ran-
dom from Fq (and independently from other elements). Note
that given {gi, ci}i∈T and {vil}i∈T ,l∈[T ], one can compute
{g̃ij}i∈T ,j∈T from (10). Since T = [T ], one can find from
(11) and (12) that,
∑
i∈U1g̃

T
i1 −

∑
k∈[K]

∑
l∈[L] α

(k−1)L+l−1
1

(∑
i∈Sk∩U1g

T
il

)
...∑

i∈U1g̃
T
iT −

∑
k∈[K]

∑
l∈[L] α

(k−1)L+l−1
T

(∑
i∈Sk∩U1g

T
il

)


T

=
[ ∑
i∈U1

vi1 · · ·
∑
i∈U1

viT

]
A, (53)

where

A ,

 αKL1 · · · αKLT
...

. . .
...

αKL+T−11 · · · αKL+T−1T

 (54)

is a T × T MDS matrix (hence invertible). Therefore,
there is no uncertainty in {

∑
i∈U1 vil}l∈[T ] given
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{
∑
i∈Sk∩U1 gi}k∈[K], {gi, ci}i∈T , {vil}i∈T ,l∈[T ],

{g̃ij}i∈H,j∈T , {αi}i∈[N ] from which (50) holds. Equation
(51) holds as the entropy of a uniform random variable over
the alphabet B is log |B| [48]. Next, the first term in (46) can
be bounded as:

H({g̃i}i∈U2 , {g̃ij}i∈H
j∈T
|{

∑
i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T ,

{vil} i∈T
l∈[T ]

, {αi}i∈[N ])

= H({g̃ij}i∈H
j∈T
|{

∑
i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T , {vil} i∈T
l∈[T ]

,

{αi}i∈[N ]) +H({g̃i}i∈U2 |{
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T ,

{vil} i∈T
l∈[T ]

, {g̃ij}i∈H
j∈T

, {αi}i∈[N ]) (55)

= H({g̃ij}i∈H
j∈T
|{

∑
i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T , {vil} i∈T
l∈[T ]

,

{αi}i∈[N ]) +H({
∑

i∈Sk∩U1

gi}k∈[K], {
∑
i∈U1

vil}l∈[T ]|

{
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T , {vil} i∈T
l∈[T ]

, {g̃ij}i∈H
j∈T

,

{αi}i∈[N ]) (56)
≤ H({g̃ij}i∈H

j∈T
) (57)

≤ (N − T )T
d

L
log q (58)

where (55) is from the chain rule of entropy; (56) follows
from (52) as {g̃i}i∈U2 is invertible to {

∑
i∈Sk∩U1 gi}k∈[K],

{
∑
i∈U1 vil}l∈[T ]; (57) holds since there is no uncertainty

in {
∑
i∈U1 vil}l∈[T ] given {

∑
i∈Sk∩U1 gi}k∈[K], {gi, ci}i∈T ,

{vil}i∈T ,l∈[T ], {g̃ij}i∈H,j∈T , {αi}i∈[N ] from (53), and that
conditioning cannot increase entropy; (58) holds since uniform
distribution maximizes entropy. By combining (46), (51), (58)
with the non-negativity of mutual information,

0 ≤ I({gi, ci}i∈H; {g̃i}i∈U2 , {g̃ij}i∈[N ]
j∈T

, {αi}i∈[N ]|

{
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T , {vil}i∈T ,l∈[T ]) (59)

≤ (N − T )T
d

L
log q − (N − T )T

d

L
log q (60)

= 0 (61)

which completes the proof.
CMGA. For this framework, the mutual information from (40)
can be written as,

I({gi, ci}i∈H;{xik} i∈[N ]
k∈[K]

,{r̃i}i∈U2 , {r̃ij}i∈[N ]
j∈T

, {αi}i∈[N ]|

{
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T , {rik} i∈T
k∈[k]

, {vil} i∈T
l∈[T ]

)

= I({gi, ci}i∈H;{xik} i∈[N ]
k∈[K]

,{r̃i}i∈U2 , {r̃ij}i∈[N ]
j∈T
|

{
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T , {rik} i∈T
k∈[k]

, {vil} i∈T
l∈[T ]

,

{αi}i∈[N ]) + I({gi, ci}i∈H; {αi}i∈[N ]|{
∑

i∈Sk∩U1

gi}k∈[K],

{gi, ci}i∈T , {rik} i∈T
k∈[k]

, {vil} i∈T
l∈[T ]

) (62)

= H({xik} i∈[N ]
k∈[K]

,{r̃i}i∈U2 , {r̃ij}i∈H
j∈T
|{
∑

i∈Sk∩U1

gi}k∈[K],

{gi, ci}i∈T , {rik} i∈T
k∈[k]

, {vil} i∈T
l∈[T ]

, {αi}i∈[N ])

−H({xik} i∈[N ]
k∈[K]

, {r̃i}i∈U2 , {r̃ij}i∈H
j∈T
|{

∑
i∈Sk∩U1

gi}k∈[K],

{gi, ci}i∈[N ], {rik} i∈T
k∈[k]

, {vil} i∈T
l∈[T ]

, {αi}i∈[N ]) (63)

where (63) follows from the chain rule, along with the fact
that there is no uncertainty in {r̃ij}i∈T

j∈T
given {vil} i∈T

l∈[T ]
,

{rik} i∈T
k∈[k]

, and that the public parameters {αi}i∈[N ] are

generated independently from the locally generated gradients
and random masks. For the second term in (63), we have,

H({xik} i∈[N ]
k∈[K]

,{r̃i}i∈U2 , {r̃ij}i∈H
j∈T
|{

∑
i∈Sk∩U1

gi}k∈[K],

{gi, ci}i∈[N ], {rik} i∈T
k∈[k]

, {vil} i∈T
l∈[T ]

, {αi}i∈[N ])

= H({rik} i∈H
k∈[K]

,{r̃i}i∈U2 , {r̃ij}i∈H
j∈T
|{

∑
i∈Sk∩U1

gi}k∈[K],

{gi, ci}i∈[N ], {rik} i∈T
k∈[k]

, {vil} i∈T
l∈[T ]

, {αi}i∈[N ]) (64)

= H({r̃i}i∈U2 |{
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈[N ], {rik}i∈[N ]
k∈[k]

,

{vil} i∈T
l∈[T ]

, {r̃ij}i∈H
j∈T

, {αi}i∈[N ]) +H({r̃ij}i∈H
j∈T
|

{
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈[N ], {rik}i∈[N ]
k∈[k]

, {vil} i∈T
l∈[T ]

,

{αi}i∈[N ]) +H({rik} i∈H
k∈[K]

) (65)

= H({
∑
i∈U1

rik}k∈[K], {
∑
i∈U1

vil}l∈[T ]|{
∑

i∈Sk∩U1

gi}k∈[K],

{gi, ci}i∈[N ], {rik}i∈[N ]
k∈[k]

, {vil} i∈T
l∈[T ]

, {r̃ij}i∈H
j∈T

, {αi}i∈[N ])

+H({vil} i∈H
l∈[T ]
|{
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈[N ],

{rik}i∈[N ]
k∈[k]

, {vil} i∈T
l∈[T ]

, {αi}i∈[N ]) +H({rik} i∈H
k∈[K]

) (66)

= 0 +H({vil} i∈H
l∈[T ]
|{

∑
i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈[N ],

{rik}i∈[N ]
k∈[k]

, {vil} i∈T
l∈[T ]

, {αi}i∈[N ]) +H({rik} i∈H
k∈[K]

) (67)

= H({vil} i∈H
l∈[T ]

) +H({rik} i∈H
k∈[K]

) (68)

= (N − T )T
d

L
log q + (N − T )Kd log q (69)

where (64) holds since given gi, ci, the uncertainty in xik
is due to rik for all k ∈ [K]; (65) is from the chain rule of
entropy and that the random vectors {rik}i∈H,k∈[K] are gener-
ated independently; (66) holds since similar to (52), {r̃i}i∈U2
is invertible to {

∑
i∈U1 rik}k∈[K], {

∑
i∈U1 vil}l∈[T ] and given

{rik}i∈[N ],k∈[K], {r̃ij}i∈H,j∈T is invertible to {vil}i∈H,l∈[T ].
Note that given {rik}i∈T ,k∈[K] and {vil}i∈T ,l∈[T ], one can
compute {r̃ij}i∈T ,j∈T from (16), and given {rik}i∈[N ],k∈[K],
one can compute {

∑
i∈U1 rik}k∈[K]. Then, by using (18) and
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(19), one can find that,
∑
i∈U1 r̃

T
i1 −

∑
k∈[K]

∑
l∈[L] α

(k−1)L+l−1
1

(∑
i∈U1 r

T
ikl

)
...∑

i∈U1 r̃
T
iT −

∑
k∈[K]

∑
l∈[L] α

(k−1)L+l−1
T

(∑
i∈U1 r

T
ikl

)


T

=
[ ∑
i∈U1

vi1 · · ·
∑
i∈U1

viT

]
A, (70)

where A is the T × T MDS matrix (invertible) from (54),
hence there is no uncertainty in {

∑
i∈U1 vil}l∈[T ] given

{rik}i∈[N ],k∈[k], {vil}i∈T ,l∈[T ], {r̃ij}i∈H,j∈T , {αi}i∈[N ],
from which (67) holds. Equation (68) is from the independence
of generated randomness, (69) is from the entropy of uniform
randomness. The first term in (63) can be bounded as,

H({xik} i∈[N ]
k∈[K]

,{r̃i}i∈U2 , {r̃ij}i∈H
j∈T
|{

∑
i∈Sk∩U1

gi}k∈[K],

{gi, ci}i∈T , {rik} i∈T
k∈[k]

, {vil} i∈T
l∈[T ]

, {αi}i∈[N ])

= H({xik} i∈H
k∈[K]

,{r̃i}i∈U2 , {r̃ij}i∈H
j∈T
|{

∑
i∈Sk∩U1

gi}k∈[K],

{gi, ci}i∈T , {rik} i∈T
k∈[k]

, {vil} i∈T
l∈[T ]

, {αi}i∈[N ]) (71)

= H({xik} i∈H
k∈[K]

|{
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T , {rik} i∈T
k∈[k]

,

{vil} i∈T
l∈[T ]

, {αi}i∈[N ]) +H({r̃ij}i∈H
j∈T
|{

∑
i∈Sk∩U1

gi}k∈[K],

{gi, ci}i∈T , {rik} i∈T
k∈[k]

, {vil} i∈T
l∈[T ]

, {xik} i∈H
k∈[K]

, {αi}i∈[N ])

+H({r̃i}i∈U2 |{
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T , {rik} i∈T
k∈[k]

,

{vil} i∈T
l∈[T ]

, {xik} i∈H
k∈[K]

, {r̃ij}i∈H
j∈T

, {αi}i∈[N ]) (72)

= H({xik} i∈H
k∈[K]

|{
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T , {rik} i∈T
k∈[k]

,

{vil} i∈T
l∈[T ]

, {αi}i∈[N ]) +H({r̃ij}i∈H
j∈T
|{

∑
i∈Sk∩U1

gi}k∈[K],

{gi, ci}i∈T , {rik} i∈T
k∈[k]

, {vil} i∈T
l∈[T ]

, {xik} i∈H
k∈[K]

, {αi}i∈[N ])

+H({
∑
i∈U1

rik}k∈[K], {
∑
i∈U1

vil}l∈[T ]|{
∑

i∈Sk∩U1

gi}k∈[K],

{gi, ci}i∈T , {rik} i∈T
k∈[k]

, {vil} i∈T
l∈[T ]

, {xik} i∈H
k∈[K]

, {r̃ij}i∈H
j∈T

,

{αi}i∈[N ]) (73)

= H({xik} i∈H
k∈[K]

|{
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T , {rik} i∈T
k∈[k]

,

{vil} i∈T
l∈[T ]

, {αi}i∈[N ]) +H({r̃ij}i∈H
j∈T
|{

∑
i∈Sk∩U1

gi}k∈[K],

{gi, ci}i∈T , {rik} i∈T
k∈[k]

, {vil} i∈T
l∈[T ]

, {xik} i∈H
k∈[K]

, {αi}i∈[N ])

+H({
∑
i∈U1

vil}l∈[T ]|{
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T , {rik} i∈T
k∈[k]

,

{vil} i∈T
l∈[T ]

, {xik} i∈H
k∈[K]

, {r̃ij}i∈H
j∈T

, {αi}i∈[N ]) (74)

= H({xik} i∈H
k∈[K]

|{
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T , {rik} i∈T
k∈[k]

,

{vil} i∈T
l∈[T ]

, {αi}i∈[N ]) +H({r̃ij}i∈H
j∈T
|{

∑
i∈Sk∩U1

gi}k∈[K],

{gi, ci}i∈T , {rik} i∈T
k∈[k]

, {vil} i∈T
l∈[T ]

, {xik} i∈H
k∈[K]

, {αi}i∈[N ])+0

(75)
≤ H({xik} i∈H

k∈[K]
) +H({r̃ij}i∈H

j∈T
) (76)

≤ (N − T )Kd log q + (N − T )T
d

L
log q (77)

where (71) holds since given {gi, ci}i∈T , {rik}i∈T ,k∈[k],
there is no uncertainty in {xik}i∈T ,k∈[K]; (72) is from
the chain rule; and (73) holds as {r̃i}i∈U2 is invertible to
{
∑
i∈U1 rik}k∈[K], and {

∑
i∈U1 vil}l∈[T ]. Note that given

{gi, ci}i∈T , {rik}i∈T ,k∈[k], one can compute {xik}i∈T ,k∈[K]

from (17), and given {xik}i∈[N ],k∈[K], one can compute
{
∑
i∈U1 xik}k∈[K]. Finally, {

∑
i∈U1 rik}k∈[K] can be com-

puted from {
∑
i∈U1 xik}k∈[K] and {

∑
i∈Sk∩U1 gi}k∈[K]

by using (21). Therefore, there is no uncertainty in
{
∑
i∈U1 rik}k∈[K] given {

∑
i∈Sk∩U1 gi}k∈[K], {gi, ci}i∈T ,

{rik}i∈T ,k∈[k], {xik}i∈H,k∈[K], from which (74) holds. Sim-
ilarly, as can be observed from (70), there is no uncertainty
in {

∑
i∈U1 vil}l∈[T ] given {

∑
i∈Sk∩U1 gi}k∈[K], {gi, ci}i∈T ,

{rik}i∈T ,k∈[k], {vil}i∈T ,l∈[T ], {xik}i∈H,k∈[K], {r̃ij}i∈H,j∈T ,
{αi}i∈[N ], from which (75) holds; (76) holds as conditioning
cannot increase entropy; (77) holds as uniform distribution
maximizes entropy. By combining (63), (69), and (77) with
the non-negativity of mutual information, we have that,

0≤I({gi, ci}i∈H;{xik} i∈[N ]
k∈[K]

,{r̃i}i∈U2 ,{r̃ij}i∈[N ]
j∈T

,{αi}i∈[N ]|

{
∑

i∈Sk∩U1

gi}k∈[K], {gi, ci}i∈T , {rik} i∈T
k∈[k]

,{vil} i∈T
l∈[T ]

)

≤(N − T )Kd log q + (N−T )T
d

L
log q

− (N−T )Kd log q − (N − T )T
d

L
log q (78)

=0 (79)

which completes the proof.
SAMC. In the following, we let C , 2(KL+T −1)+1 and,

A ,
{
{αi}i∈[N ], {βm}m∈[KL+T ],

{θm}m∈{KL+1,...,2(KL+T−1)+1}, {λm}m∈{N−T}
}

(80)

Then, the mutual information from (40) can be written as:

I({gi, bik}i∈H
k∈[K]

;{xi}i∈[N ], {yik} i∈[N ]
k∈[K]

,{z̃ij}i∈[N ]
j∈T

,{ãi}i∈U2 ,

{r̃ij}i∈[N ]
j∈T

, {ñij}i∈[N ]
j∈T

,A|
∑

i∈Sk∩U1

gi}k∈[K], {gi, bik} i∈T
k∈[K]

,

{ri, zik} i∈T
k∈[K]

, {vil, uil} i∈T
l∈{KL+1,...,KL+T}

,

{nil} i∈T
l∈{KL+1,...,C}

)

= H({xi}i∈[N ], {yik} i∈[N ]
k∈[K]

,{z̃ij}i∈H
j∈T

,{ãi}i∈U2 , {r̃ij}i∈H
j∈T

,

{ñij}i∈H
j∈T
|{
∑

i∈Sk∩U1

gi}k∈[K], {gi, bik} i∈T
k∈[K]

, {ri, zik} i∈T
k∈[K]

,

{vil, uil} i∈T
l∈{KL+1,...,KL+T}

,{nil} i∈T
l∈{KL+1,...,C}

,A)
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−H({xi}i∈[N ], {yik} i∈[N ]
k∈[K]

,{z̃ij}i∈H
j∈T

, {ãi}i∈U2 , {r̃ij}i∈H
j∈T

,

{ñij}i∈H
j∈T
|{
∑

i∈Sk∩U1

gi}k∈[K], {gi, bik} i∈[N ]
k∈[K]

, {ri, zik} i∈T
k∈[K]

,

{vil, uil} i∈T
l∈{KL+1,...,KL+T}

,{nil} i∈T
l∈{KL+1,...,C}

,A) (81)

For the second term in (81), we find that:

H({xi}i∈[N ], {yik} i∈[N ]
k∈[K]

,{z̃ij}i∈H
j∈T

,{ãi}i∈U2 , {r̃ij}i∈H
j∈T

,

{ñij}i∈H
j∈T
|{
∑

i∈Sk∩U1

gi}k∈[K], {gi, bik} i∈[N ]
k∈[K]

, {ri, zik} i∈T
k∈[K]

,

{vil, uil} i∈T
l∈{KL+1,...,KL+T}

, {nil} i∈T
l∈{KL+1,...,C}

,A)

= H({ri}i∈H, {zik} i∈H
k∈[K]

, {z̃ij}i∈H
j∈T

,{ãi}i∈U2 , {r̃ij}i∈H
j∈T

,

{ñij}i∈H
j∈T
|{
∑

i∈Sk∩U1

gi}k∈[K], {gi, bik} i∈[N ]
k∈[K]

, {ri, zik} i∈T
k∈[K]

,

{vil, uil} i∈T
l∈{KL+1,...,KL+T}

, {nil} i∈T
l∈{KL+1,...,C}

,A) (82)

= H({z̃ij}i∈H
j∈T

,{ãi}i∈U2 , {r̃ij}i∈H
j∈T

, {ñij}i∈H
j∈T
|

{
∑

i∈Sk∩U1

gi}k∈[K], {gi, bik} i∈[N ]
k∈[K]

, {vil, uil} i∈T
l∈{KL+1,...,KL+T}

,

{nil} i∈T
l∈{KL+1,...,C}

, {ri}i∈[N ], {zik} i∈[N ]
k∈[K]

,A)

+H({zik} i∈H
k∈[K]

|{
∑

i∈Sk∩U1

gi}k∈[K], {gi, bik} i∈[N ]
k∈[K]

,

{vil, uil} i∈T
l∈{KL+1,...,KL+T}

, {nil} i∈T
l∈{KL+1,...,C}

, {ri}i∈[N ],

{zik} i∈T
k∈[K]

,A) +H({ri}i∈H|{
∑

i∈Sk∩U1

gi}k∈[K],

{gi, bik} i∈[N ]
k∈[K]

, {vil, uil} i∈T
l∈{KL+1,...,KL+T}

,

{nil} i∈T
l∈{KL+1,...,C}

, {ri}i∈T , {zik} i∈T
k∈[K]

,A) (83)

= H({z̃ij}i∈H
j∈T

,{ãi}i∈U2 , {r̃ij}i∈H
j∈T

, {ñij}i∈H
j∈T
|

{
∑

i∈Sk∩U1

gi}k∈[K],{gi, bik} i∈[N ]
k∈[K]

,{vil, uil} i∈T
l∈{KL+1,...,KL+T}

,

{nil} i∈T
l∈{KL+1,...,C}

, {ri}i∈[N ], {zik} i∈[N ]
k∈[K]

,A)

+H({zik} i∈H
k∈[K]

) +H({ri}i∈H) (84)

= H({z̃ij}i∈H
j∈T

,{ãi}i∈U2 , {ñij}i∈H
j∈T

, {mij}i∈H
j∈T
|

{
∑

i∈Sk∩U1

gi}k∈[K], {gi, bik} i∈[N ]
k∈[K]

, {vil, uil} i∈T
l∈{KL+1,...,KL+T}

,

{nil} i∈T
l∈{KL+1,...,C}

, {ri}i∈[N ], {zik} i∈[N ]
k∈[K]

,A)

+H({zik} i∈H
k∈[K]

) +H({ri}i∈H) (85)

= H({z̃ij}i∈H
j∈T

,{ãi}i∈U2 , {ñij}i∈H
j∈T
|{
∑

i∈Sk∩U1

gi}k∈[K],

{gi, bik} i∈[N ]
k∈[K]

, {vil, uil} i∈T
l∈{KL+1,...,KL+T}

,

{nil} i∈T
l∈{KL+1,...,C}

, {ri}i∈[N ], {zik} i∈[N ]
k∈[K]

, {mij}i∈H
j∈T

,A)

+H({mij}i∈H
j∈T
|A) +H({zik} i∈H

k∈[K]
) +H({ri}i∈H) (86)

= H({eij}i∈H
j∈T

,{ãi}i∈U2 , {ñij}i∈H
j∈T
|{
∑

i∈Sk∩U1

gi}k∈[K],

{gi, bik} i∈[N ]
k∈[K]

, {vil, uil} i∈T
l∈{KL+1,...,KL+T}

,

{nil} i∈T
l∈{KL+1,...,C}

, {ri}i∈[N ], {zik} i∈[N ]
k∈[K]

, {mij}i∈H
j∈T

,A)

+H({mij}i∈H
j∈T
|A) +H({zik} i∈H

k∈[K]
) +H({ri}i∈H) (87)

= H({ãi}i∈U2 , {ñij}i∈H
j∈T
|{
∑

i∈Sk∩U1

gi}k∈[K], {gi, bik} i∈[N ]
k∈[K]

,

{vil, uil} i∈T
l∈{KL+1,...,KL+T}

, {nil} i∈T
l∈{KL+1,...,C}

, {ri}i∈[N ],

{zik}i∈[N ]
k∈[K]

, {mij}i∈H
j∈T

, {eij}i∈H
j∈T

,A) +H({eij}i∈H
j∈T
|A)

+H({mij}i∈H
j∈T
|A) +H({zik} i∈H

k∈[K]
) +H({ri}i∈H) (88)

= H({
∑
j∈U1

φj(αi)ψj(αi)− ñi}i∈U2 , {ñij}i∈H
j∈T
|

{
∑

i∈Sk∩U1

gi}k∈[K], {gi, bik} i∈[N ]
k∈[K]

, {vil, uil} i∈T
l∈{KL+1,...,KL+T}

,

{nil} i∈T
l∈{KL+1,...,C}

,{ri}i∈[N ], {zik} i∈[N ]
k∈[K]

, {mij}i∈H
j∈T

,

{eij}i∈H
j∈T

,A) +H({eij}i∈H
j∈T
|A) +H({mij}i∈H

j∈T
|A)

+H({zik} i∈H
k∈[K]

) +H({ri}i∈H) (89)

= H({ñi}i∈U2 , {ñij}i∈H
j∈T
|{
∑

i∈Sk∩U1

gi}k∈[K], {gi, bik} i∈[N ]
k∈[K]

,

{vil, uil} i∈T
l∈{KL+1,...,KL+T}

, {nil} i∈T
l∈{KL+1,...,C}

, {ri}i∈[N ],

{zik} i∈[N ]
k∈[K]

, {mij}i∈H
j∈T

, {eij}i∈H
j∈T

,A) +H({eij}i∈H
j∈T
|A)

+H({mij}i∈H
j∈T
|A) +H({zik} i∈H

k∈[K]
) +H({ri}i∈H) (90)

= H({ñij}i∈H
j∈T
|{ñi}i∈U2 , {nil} i∈T

l∈{KL+1,...,C}
,A)

+H(ñi}i∈U2 |{nil} i∈T
l∈{KL+1,...,C}

,A) +H({eij}i∈H
j∈T
|A)

+H({mij}i∈H
j∈T
|A) +H({zik} i∈H

k∈[K]
) +H({ri}i∈H) (91)

= 0 +H({ñi}i∈U2 |{nil} i∈T
l∈{KL+1,...,C}

,A)

+H({eij}i∈H
j∈T
|A) +H({mij}i∈H

j∈T
|A) +H({zik} i∈H

k∈[K]
)

+H({ri}i∈H) (92)

= H({nl}l∈{KL+1,...,C}|{nil} i∈T
l∈{KL+1,...,C}

,A)

+H({eij}i∈H
j∈T
|A) +H({mij}i∈H

j∈T
|A) +H({zik} i∈H

k∈[K]
)

+H({ri}i∈H) (93)

= H
({[∑

j∈[N ]

λj−11 nT
jl · · ·

∑
j∈[N ]

λj−1N−Tn
T
jl

]T}
l∈{KL+1,...,C}|

{nil} i∈T
l∈{KL+1,...,C}

,A
)

+H({eij}i∈H
j∈T
|A)

+H({mij}i∈H
j∈T
|A) +H({zik} i∈H

k∈[K]
) +H({ri}i∈H) (94)
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= H
({[∑

j∈H
λj−11 nT

jl · · ·
∑
j∈H

λj−1N−Tn
T
jl

]T}
l∈{KL+1,...,C}|

A
)

+H({eij}i∈H
j∈T
|A) +H({mij}i∈H

j∈T
|A)

+H({zik} i∈H
k∈[K]

) +H({ri}i∈H) (95)

= H
({[

n(T+1)l · · · nNl
]
B
}
l∈{KL+1,...,C}|A

)
+H({eij}i∈H

j∈T
|A) +H({mij}i∈H

j∈T
|A) +H({zik} i∈H

k∈[K]
)

+H({ri}i∈H) (96)
= H({nil} i∈H

l∈{KL+1,...,C}
) +H({uil} i∈H

l∈{KL+1,...,KL+T}
)

+H({vil} i∈H
l∈{KL+1,...,KL+T}

) +H({zik} i∈H
k∈[K]

)

+H({ri}i∈H) (97)

= (C −KL)(N − T )
d

L(N − T )
log q + (N − T )T log q

+ (N − T )T
d

L
log q + (N − T )K log q + (N − T )d log q

(98)

where (82) holds since given gi and {bik}k∈[K], the uncer-
tainty in xi and {yik}k∈[K] is due to the uncertainty in ri and
{zik}k∈[K]; (83) follows from chain rule of entropy; (84) holds
since {zik}i∈H,k∈[K] and {ri}i∈H are independent uniformly
random vectors in Fq . In (85), we define:

mij ,
KL+T∑
l=KL+1

vil
∏

m∈[KL+T ]\{l}

αj − βm
βl − βm

∀i ∈ H, j ∈ T

(99)
and (86) is from the chain rule and independence of generated
randomness. In (87), we define:

eij ,
KL+T∑
l=KL+1

uil
∏

m∈[KL+T ]\{l}

αj − βm
βl − βm

(100)

whereas (88) follows from the chain rule and indepen-
dence of generated randomness. We next let γjl :=∏
m∈[KL+T ]\{l}

αj−βm

βl−βm
denote the Lagrange coefficients in

(100)-(99). Then,[
mi1 · · · miT

]
=
[
vi,KL+1 · · · vi,KL+T

]
M, (101)[

ei1 · · · eiT
]

=
[
ui,KL+1 · · · ui,KL+T

]
M, (102)

where

M ,

γ1,KL+1 · · · γT,KL+1

...
. . .

...
γ1,KL+T · · · γT,KL+T

 , (103)

is a T × T MDS matrix (hence invertible) from the
MDS property of Lagrange coefficients [49]. Hence,
one can recover {vil, uil}i∈H,l∈{KL+1,...,KL+T} given
{mij}i∈H,j∈T , {eij}i∈H,j∈T , and A. Then, (90) holds as
there is no uncertainty in {

∑
j∈U1 φj(αi)ψj(αi)}i∈U2 given

{gi, bik} i∈[N ]
k∈[K]

, {vil, uil} i∈T
l∈{KL+1,...,KL+T}

, {mij}i∈H
j∈T

,

{eij}i∈H
j∈T

, and A since φj(αi), ψj(αi) can be computed

from (37) and (38) given gj , {vjl}l∈{KL+1,...,KL+T} and
bjk,{ujl}l∈{KL+1,...,KL+T}, respectively. Equation (92)
holds since {ñi}i∈U2 correspond to evaluation points of

the degree of C − 1 polynomial v(α) from (30). As any
polynomial of degree C−1 can be uniquely interpolated from
any set of C evaluation points, v(α) can be reconstructed
from |U2| = C evaluations {ñi}i∈U2 , from which one can
recover nl = v(θl) for all l ∈ {KL+ 1, . . . , C}. Then, given
{nl}l∈{KL+1,...,C}, {njl}j∈T ,l∈{KL+1,...,C}, and A, one can
reconstruct {njl}j∈H,l∈{KL+1,...,C} as,[

n(T+1)l · · · nNl
]
B

= nl −
[∑

j∈[T ] λ
j−1
1 njl · · ·

∑
j∈[T ] λ

j−1
N−Tnjl

]
=
[∑

j∈[N ] λ
j−1
1 njl · · ·

∑
j∈[N ] λ

j−1
N−Tnjl

]
−
[∑

j∈[T ] λ
j−1
1 njl · · ·

∑
j∈[T ] λ

j−1
N−Tnjl

]
=
[∑N

j=T+1 λ
j−1
1 njl · · ·

∑N
j=T+1 λ

j−1
N−Tnjl

]
for all l ∈ {KL+ 1, . . . , C}, where

B ,

 λT1 · · · λTN−T
...

. . .
...

λN−11 · · · λN−1N−T

 (104)

is an (N − T )× (N − T ) MDS matrix (invertible). Equation
(93) holds since polynomial v(α) has degree C − 1, which
can be uniquely constructed from any set of C evaluation
points. Hence, there is a bijective mapping between any
C interpolation points, {v(θl)}l∈[C], where v(θl) = 0 for
l ∈ [KL], and v(θl) = nl for l ∈ {KL + 1, . . . , C}, and the
set of local computations {ñi}i∈U2 where |U2| = C. Equation
(97) holds from (101) and (102). Finally, (98) is from the
entropy of uniform random variables. Next, the first term in
(81) can be bounded as follows:

H({xi}i∈[N ], {yik} i∈[N ]
k∈[K]

,{z̃ij}i∈H
j∈T

,{ãi}i∈U2 , {r̃ij}i∈H
j∈T

,

{ñij}i∈H
j∈T
|{
∑

i∈Sk∩U1

gi}k∈[K], {gi, bik} i∈T
k∈[K]

, {ri, zik} i∈T
k∈[K]

,

{vil, uil} i∈T
l∈{KL+1,...,KL+T}

, {nil} i∈T
l∈{KL+1,...,C}

,A)

= H({xi}i∈H, {yik} i∈H
k∈[K]

,{z̃ij}i∈H
j∈T

,{ãi}i∈U2 , {r̃ij}i∈H
j∈T

,

{ñij}i∈H
j∈T
|{
∑

i∈Sk∩U1

gi}k∈[K], {gi, bik} i∈T
k∈[K]

, {ri, zik} i∈T
k∈[K]

,

{vil, uil} i∈T
l∈{KL+1,...,KL+T}

, {nil} i∈T
l∈{KL+1,...,C}

,A) (105)

≤ H({xi}i∈H) +H({yik} i∈H
k∈[K]

) +H({z̃ij}i∈H
j∈T

)

+H({r̃ij}i∈H
j∈T

) +H({ñij}i∈H
j∈T

) +H({ãi}i∈U2 |

{
∑

i∈Sk∩U1

gi}k∈[K], {gi, bik} i∈T
k∈[K]

, {ri, zik} i∈T
k∈[K]

,

{vil, uil} i∈T
l∈{KL+1,...,KL+T}

, {nil} i∈T
l∈{KL+1,...,C}

, {xi}i∈H,

{yik} i∈H
k∈[K]

, {z̃ij}i∈H
j∈T

, {r̃ij}i∈H
j∈T

, {ñij}i∈H
j∈T

,A) (106)

= H({xi}i∈H) +H({yik} i∈H
k∈[K]

) +H({z̃ij}i∈H
j∈T

)

+H({r̃ij}i∈H
j∈T

) +H({ñij}i∈H
j∈T

) +H({f(θl)}l∈[C−T ],

{f(αi)}i∈[T ]|{
∑

i∈Sk∩U1

gi}k∈[K], {gi, bik} i∈T
k∈[K]

, {ri}i∈T ,

This article has been accepted for publication in IEEE Transactions on Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2024.3366394

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 17,2024 at 20:22:16 UTC from IEEE Xplore.  Restrictions apply. 



15

{zik} i∈T
k∈[K]

,{vil, uil} i∈T
l∈{KL+1,...,KL+T}

,{nil} i∈T
l∈{KL+1,...,C}

,

{xi}i∈H, {yik} i∈H
k∈[K]

, {z̃ij}i∈H
j∈T

, {r̃ij}i∈H
j∈T

, {ñij}i∈H
j∈T

,A)

(107)
= H({xi}i∈H) +H({yik} i∈H

k∈[K]
) +H({z̃ij}i∈H

j∈T
)

+H({r̃ij}i∈H
j∈T

) +H({ñij}i∈H
j∈T

)

+H({f(θl)}l∈{KL+1,...,C−T}|{
∑

i∈Sk∩U1

gi}k∈[K],

{gi, bik} i∈T
k∈[K]

, {ri}i∈T , {zik} i∈T
k∈[K]

,

{vil, uil} i∈T
l∈{KL+1,...,KL+T}

, {nil} i∈T
l∈{KL+1,...,C}

, {xi}i∈H,

{yik} i∈H
k∈[K]

, {z̃ij}i∈H
j∈T

, {r̃ij}i∈H
j∈T

, {ñij}i∈H
j∈T

,A) (108)

≤ H({xi}i∈H) +H({yik} i∈H
k∈[K]

) +H({z̃ij}i∈H
j∈T

)

+H({r̃ij}i∈H
j∈T

) +H({ñij}i∈H
j∈T

)

+H({f(θl)}l∈{KL+1,...,C−T}) (109)
≤ (N − T )d log q + (N − T )K log q + (N − T )T log q

+ (N − T )T
d

L
log q + T (N − T )

d

L(N − T )
log q

+ (C − T −KL)
d

L
log q (110)

where (106) is from the chain rule and that condition-
ing cannot increase entropy. Equation (107) holds since
{ãi}i∈U2 correspond to C evaluations of a degree C −
1 polynomial, f(α) from (36) for α ∈ {αi}i∈U2 . Since
a polynomial of degree C − 1 can be uniquely recon-
structed from any set of C evaluation points, there is
a bijective mapping between the C interpolation points
{f(θl)}l∈[C−T ], {f(αi)}i∈[T ] and the C local computations
{ãi}i∈U2 . Note that there is no uncertainty in {f(θl)}l∈[KL]
given {

∑
i∈Sk∩U1 gi}k∈[K], and A, which follows from (39)

and that θl = βl for l ∈ [KL]. Next, note that one can compute
{r̃ij}i∈T

j∈T
, {z̃ij}i∈T

j∈T
, and {ñij}i∈T

j∈T
given {ri}i∈T , {zik} i∈T

k∈[K]
,

{vil, uil} i∈T
l∈{KL+1,...,KL+T}

, {nil} i∈T
l∈{KL+1,...,C}

, and A from

(24), (26), and (28). Moreover, given {ñij}i∈[N ]
j∈T

, one can com-

pute {ñi}i∈T from (29), and given {gi, bik} i∈T
k∈[K]

, {ri}i∈T ,

{zik} i∈T
k∈[K]

, one can compute {xi}i∈T , {yik} i∈T
k∈[K]

from (32)

and (33). Therefore, there is no uncertainty in {f(αi)}i∈[T ] =
{ãi}i∈[T ] given {gi, bik} i∈T

k∈[K]
, {ri}i∈T , {zik} i∈T

k∈[K]
, {xi}i∈H,

{yik} i∈H
k∈[K]

, {vil, uil} i∈T
l∈{KL+1,...,KL+T}

, {nil} i∈T
l∈{KL+1,...,C}

,

{z̃ij}i∈H
j∈T

, {r̃ij}i∈H
j∈T

, {ñij}i∈H
j∈T

, and A according to (35),

from which (108) holds. Finally, (110) holds since uniform
distribution maximizes entropy. By combining (98), (110), and
(81) with the non-negativity of mutual information,

0 ≤ I({gi, bik}i∈H
k∈[K]

;{xi}i∈[N ],{yik} i∈[N ]
k∈[K]

,{z̃ij}i∈[N ]
j∈T

,

{ãi}i∈U2 , {r̃ij}i∈[N ]
j∈T

, {ñij}i∈[N ]
j∈T

,A|{
∑

i∈Sk∩U1

gi}k∈[K],

{gi, bik} i∈T
k∈[K]

, {ri, zik} i∈T
k∈[K]

, {vil, uil} i∈T
l∈{KL+1,...,KL+T}

,

{nil} i∈T
l∈{KL+1,...,C}

)

≤ (C −KL)
d

L
log q + (N − T )T log q + (N − T )T

d

L
log q

+K(N − T ) log q + (N − T )d log q − (N − T )d log q

− (N − T )K log q − (N − T )T log q − (N − T )T
d

L
log q

− (C −KL)
d

L
log q (111)

= 0 (112)

which completes the proof.
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