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Over-the-Air Clustered Federated Learning
Hasin Us Sami Başak Güler

Abstract—Over-the-air federated learning (FL) is a recent
paradigm to address the communication bottleneck of FL, where
a machine learning model is trained by aggregating the local
gradients directly in the wireless medium. On the other hand, due
to the inherent data heterogeneity across wireless users, training
a single model to serve all users can severely degrade individual
user performance. Towards addressing this challenge, in this
work we propose over-the-air clustered FL, where multiple models
are trained concurrently over-the-air, and each model is adapted
gradually to a group of users with similar data distributions.
We introduce AirCluster, an over-the-air clustered FL frame-
work with coordinated zero-forcing MIMO beamforming, along
with a sketching-based dimensionality reduction mechanism to
enable over-the-air training with limited number of antennas.
Our theoretical analysis provides formal convergence guarantees
for the trained models, while identifying the key performance
trade-offs in terms of the convergence rate, compression ratio,
channel quality, and the number of antennas. Through extensive
experiments on multiple datasets, we observe significant increase
in the test accuracy for individual users over state-of-the-art FL
benchmarks. Our results demonstrate over-the-air FL to be a
promising approach in addressing the communication bottleneck
of FL, even under severe data heterogeneity.

Index Terms—Over-the-air machine learning, clustered feder-
ated learning, distributed training.

I. INTRODUCTION

Federated learning (FL) is a distributed framework to train
machine learning models over the data collected locally by
a large number of wireless edge devices [2]. Training is
often coordinated by a server who maintains a global model,
which is updated iteratively by the wireless devices (users)
through local training. The user updates are then aggregated
by the server to update the global model. Due to the need for
allocating limited spectrum resources across a large number of
users (which can reach millions/billions), a major bottleneck in
real-world settings is the communication overhead of sending
the user updates to the server [3].

Over-the-air FL (OTA-FL) has recently been introduced to
address this challenge by utilizing the superposition property
of the multi-access channel [4], [5], [6]. OTA-FL aggregates
the local updates over-the-air, reducing the communication
overhead by a factor of the number of users. In contrast to con-
ventional FL, where the server reconstructs each local update
to aggregate them, OTA-FL enables aggregation concurrently
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in the channel. Despite the recent advances in spectrum
efficiency, training a single model to serve all users can lead to
severe performance drop when the local dataset distributions of
the users are heterogeneous [7], [8], [9]. Data heterogeneity
leads to slower convergence, and the model tends to favor
some users while heavily degrading the performance of others,
particularly the underrepresented users [9], [10], [11].

Personalized FL is a recent paradigm to address data hetero-
geneity in FL, by incorporating the local data characteristics
of individual users during model training. Broadly, person-
alization approaches can be categorized into two subclasses.
The first one takes a user-level approach, where an individual
model is trained for each user, through various techniques such
as fine tuning or meta learning [12], [13], [14], [15], [16].
The second one takes a group-level approach, where different
models are trained for different groups of users with similar
data characteristics [7], [17], [18], [19], [20], [21], [22], [23].
Also known as clustered FL, this approach iteratively clusters
users with respect to their data distributions, while training a
separate model for each cluster. Clustered FL allows the server
to maintain personalized models for serving users with similar
characteristics, while avoiding excessive memory and storage
costs for handling a large number of personalized models.

In this work, we introduce AirCluster, an over-the-air clus-
tered FL framework, to enable group-level personalization in
OTA-FL. OTA-FL allows the server to observe the sum of
all user updates, but the server loses access to the individual
updates, hence is not able to separate the updates belonging
to different clusters of users. In contrast, allocating dedicated
spectrum resources for each cluster eliminates the benefits of
spectrum co-existence, the primary prospect of OTA-FL. Air-
Cluster enables multiple models to be trained simultaneously
in a shared spectrum, while ensuring model convergence for
all clusters. To do so, AirCluster leverages a MIMO system
to align the transmitted waveforms for the local gradients
belonging to the users in the same cluster, while ensuring that
the aggregate of the local gradients for each cluster can be
decoded by the server. To ensure reliable training with limited
number of antennas, we propose a compressed clustered FL
framework by leveraging gradient sketching [24], [25], [26],
where we adapt the dimensionality of the local updates to
the resource limitations, while providing formal convergence
guarantees for the models of all clusters simultaneously.

In our theoretical analysis, we present a novel model con-
vergence analysis for clustered OTA-FL, by incorporating the
joint impact of clustering, channel noise, and compression,
and identify the key trade-offs between the convergence rate,
number of antennas, channel quality and data heterogeneity.
We perform extensive experiments to evaluate the performance
of AirCluster, for various image classification tasks on the
MNIST and CIFAR-10 datasets [27], [28] under highly het-
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erogeneous data distributions across the users. We further
demonstrate the impact of channel conditions, as well as
the number of antennas and compression ratio on the test
accuracy of the trained models. Our experiments demonstrate
that AirCluster can significantly improve the performance
of OTA-FL in heterogeneous settings. Our contributions are
summarized as follows:

1) We propose a personalized OTA-FL framework, AirClus-
ter, to jointly address data heterogeneity and bandwidth
limitations in FL. AirCluster trains multiple models con-
currently, where models are adapted to the data hetero-
geneity across the users, while allowing all users to share
the same spectrum resources.

2) We develop a coordinated MIMO beamforming and gra-
dient compression mechanism to enable spectrum co-
existence for clustered FL under resource limitations.

3) We provide the theoretical convergence guarantees of
AirCluster, and identify the key trade-offs between the
convergence rate, compression ratio, channel noise, and
the number of antennas.

4) Through extensive experiments, we demonstrate signifi-
cant increase in the test accuracy against state-of-the-art
FL benchmarks, even when the latter is evaluated under
ideal channel conditions and uncompressed gradients.

II. RELATED WORK

Personalized FL. For user-level personalization, a multi-task
learning approach is proposed in [12], whereas [13], [14], and
[15] propose a meta-learning approach. To enhance model
accuracy under user heterogeneity [8] uses a proximal term
to minimize divergence among local updates. For group-
level personalization, [23] introduces hierarchical clustering,
whereas [18] leverages cosine similarity between the local
updates. References [7] and [19] propose clustered FL with
formal convergence guarantees, where multiple adaptive mod-
els are trained simultaneously, and models are adapted to
groups of users with similar data distributions. Reference [20]
studies mixture of source distributions, whereas [21] addresses
fairness. Dynamic clustering is studied in [22], [29], whereas
[30] studies the number of clusters in heterogeneous settings.
Over-the-air FL (OTA-FL). OTA computing performs trans-
mission and computation simultaneously by leveraging the
waveform superposition property of the multi access channel
[31], [32], [33], [34], [35]. Recently, OTA-FL has been used
to aggregate the local gradients in FL [4], [5], [6], [36], [37].
Reference [38] studies digital OTA-FL, [39] explores time-
varying precoding, whereas [40] studies power allocation, and
[41], [42] consider user scheduling. Reference [43] explores
user privacy, whereas [44], [45] leverage intermediate parties
to mitigate adverse channel effects. In contrast, our focus is on
OTA-FL with personalization, where the goal is to mitigate the
adverse effects of data heterogeneity across the local datasets.
Gradient compression and sketching. Broadly, there are
three complementary techniques to gradient compression in
FL: 1) Gradient sketching is rooted in compressed sensing
principles, with the intuition that gradient vectors are sparse, to
map them to a lower dimensional subspace through a sketching

matrix [24], [25], [26]. Sketching enables gradient aggrega-
tion without increasing dimensionality, hence is particularly
suitable for antenna-limited settings. 2) Gradient quantization
reduces the number of bits used to represent each gradient
parameter [46]. 3) Gradient sparsification allows users to
send a small fraction of local gradient parameters [47], [48].
Parameter coordinates often differ across the users, increasing
the size of the aggregated gradient.
Organization. The remainder of the paper is organized
as follows. In Section III, we present the system model.
Section IV introduces the AirCluster framework. Section V
presents the theoretical analysis, and Section VI provides the
experimental results. Section VII concludes the paper.
Notation. In the following, x is a scalar, x is a vector, and
X is a matrix. X is a set with cardinality |X |, and [N ] =
{1, . . . , N}. XH is the Hermitian transpose, tr(X) is the trace,
and ‖X‖F is the Frobenius norm of X. We use x & y when
x ≥ cy for some sufficiently large constant c > 0, and x . y
when x ≤ cy for some sufficiently small constant c > 0.

III. PROBLEM FORMULATION

We consider a clustered FL task in a network of N users,
where user i ∈ [N ] has a local dataset Di with |Di| := Di

data points. The local dataset of each user is realized from a
class of K distributions P1, . . . ,PK . The set of users i ∈ [N ]
for which Di ∼ Pk is denoted by the set C∗k = {i ∈ [N ] :
Di ∼ Pk} ⊆ [N ]. The goal is to train K models, where model
wk ∈ Rd is designed for cluster k ∈ [K] to minimize the loss,

Fk(wk) := Eξ∼Pk [f(wk, ξ)], (1)

where f(wk, ξ) is the stochastic loss function computed on
data sample ξ ∈ Di, d denotes the dimension of wk, and

w∗k = arg minwk∈RdFk(wk), (2)

denotes the minimizer of (1), hence the optimal model for
cluster k ∈ [K]. The dataset distributions and cluster identities
are unknown to the users and server apriori, hence any solution
to (1) should identify both the set of users assigned to each
cluster, and the associated model parameters jointly. Training
is done through an iterative process. At each iteration, users
select the cluster that minimizes the loss on their local dataset,
and train the model for the selected cluster. The state of model
wk at training round t is denoted by wk(t), which we refer to
as a global model for cluster k ∈ [K]. At each training round,
the server broadcasts the current state of the K global models
{wk(t)}k∈[K] to the users. Then, user i computes a local loss,

Fi(wk(t), Ẑi(t)) :=
1

|Ẑi(t)|

∑
ξ∈Ẑi(t)

Fi(wk(t), ξ) ∀k ∈ [K],

(3)

where Ẑi(t) ⊆ Di denotes the set of data samples used for
cluster estimation at round t, and Fi(wk(t), ξ) is the local
loss computed on the local data sample ξ ∈ Ẑi(t). Then, user
i selects the cluster that minimizes the local loss,

cit := arg min
k∈[K]

Fi(wk(t), Ẑi(t)), (4)
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and updates the global model for the selected cluster, by
creating a local model wi(t) ← wcit(t), and updating it
through E local gradient descent steps,

wi(t)← wi(t)− η∇Fi(wi(t),Zi(t)) (5)

where Zi(t) ⊆ Di denotes a minibatch of data samples used
for training at round t,

∇Fi(wi(t),Zi(t)) :=
1

|Zi(t)|
∑

ξ∈Zi(t)

∇Fi(wi(t), ξ) (6)

represents the average of the stochastic gradients evaluated on
the data samples ξ ∈ Zi(t), and η is the learning rate. After
E local training rounds, user i sends the model difference,

gi(t) := wcit(t)−wi(t), (7)

to the server. Note that gi(t) denotes the accumulated gradient
over E local training iterations (scaled by learning rate), hence
will be referred to as the local gradient of user i in the sequel.
After receiving the local updates from (7), the server updates
the global model for each cluster,

wk(t+ 1) = wk(t)− 1

|Ck(t)|
∑

i∈Ck(t)

gi(t) (8)

= wk(t)− gk(t) ∀k ∈ [K], (9)

where the set of users assigned to cluster k according to (4)
at training round t (which may be different than the ground
truth C∗k) is denoted by,

Ck(t) := {i ∈ [N ] : cit = k} (10)

and the empirical average of the gradients from users in cluster
k is given by,

gk(t) :=
1

|Ck(t)|
∑

i∈Ck(t)

gi(t). (11)

The main intuition behind the clustering mechanism is that
the optimal model for each distribution should minimize the
local loss for the users sampled from that distribution [19].
The clustering mechanism first identifies the group of users
for which a given model performs the best, and then updates
the model using the local datasets of those users.
Main problem. Our goal is to develop an over-the-air
clustered FL framework to enable spectrum co-existence for
group-level personalization in FL. We ask the question,
• How can we develop a communication-efficient over-the-

air clustered FL framework, where all cluster models
from (9) are trained concurrently in the wireless medium?

The key challenge is that (9) requires the server to recover the
sum of the local updates for each cluster. On the other hand,
when users send their updates concurrently over the wireless
channel, the server only observes the sum of the local updates
from all users, and can not distinguish the updates belonging
to different clusters. In contrast, allocating dedicated spectrum
resources for each cluster eliminates spectrum co-existence,
the primary benefit of over-the-air FL.

To address this challenge, in this work we introduce Air-
Cluster, an over-the-air clustered FL framework, that enables

spectrum sharing across different groups (clusters) of users
with heterogeneous data distributions, where the local updates
from (11) are aggregated concurrently over-the-air, while en-
suring that the server can recover the aggregate of the local
models belonging to each cluster. To do so, we utilize spatial
dimensions enabled by a MIMO beamforming architecture,
and propose a coordinated precoder design that aligns the
signals designated for each cluster over-the-air, while direct-
ing signals designated for different clusters in orthogonal
subspaces. To enable robust training with a limited number
of antennas, we leverage an unbiased gradient compression
methodology with sketching, to transform the local gradients
to a lower dimensional subspace prior to transmission. We next
describe the details of AirCluster.

IV. AIRCLUSTER: OVER-THE-AIR CLUSTERED
FEDERATED LEARNING

We first describe the details of the underlying MIMO
transmission architecture.
Network model. We consider a wireless access point (AP)
integrated with the server, equipped with NR receive antennas.
User i ∈ [N ] has NT transmit antennas. We consider a block
Rayleigh fading channel model where the channel coefficients
stay constant within a given training round, but may vary from
one round to another. The channel coefficients from user i to
the AP are represented with an NR × NT matrix Hi(t) at
round t ∈ [T ], where each element is distributed i.i.d. from a
complex Gaussian distribution CN (0, σ2).
Over-the-air gradient aggregation. We consider a clustered
FL task when the local gradients from (11) for all clusters are
aggregated over-the-air. We utilize a linear MIMO precoding
architecture, where user i ∈ [N ] is equipped with an NT × d
dimensional precoding matrix Vi(t) at round t, using which
the user encodes its local gradient gi(t), and sends the encoded
gradient Vi(t)gi(t) to the AP. The maximum average transmit
power constraint of user i is given by PT,i. The received signal
at the AP is denoted by an NR × 1 vector,

y(t) =
∑
i∈[N ]

Hi(t)Vi(t)gi(t) + n(t)

=
∑
k∈[K]

∑
i∈Ck(t)

Hi(t)Vi(t)gi(t) + n(t) (12)

at round t, where n(t) represents the noise vector consisting
of independent zero mean Gaussian random variables with
E[n(t)n(t)H ] = σ2

nI. Upon receiving (12), the AP decodes
the sum of the local gradients from (11) for each cluster
k ∈ [K], using an NR × d decoding matrix Uk(t) for each
cluster k ∈ [K]. The decoding for cluster k is given as,

ĝk(t) =
1

|Ck(t)|
UH
k (t)y(t) (13)

where ĝk(t) is the estimate of the aggregated local gradients
for cluster k. Finally, the AP updates the global models as
shown in (9) for the next round,

wk(t+ 1) = wk(t)− ĝk(t) for all k ∈ [K]. (14)

Our goal is to design the precoders and decoders
{Vi(t)}i∈[N ], {Uk(t)}k∈[K] to ensure formal convergence
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Fig. 1. Over-the-air clustered FL (AirCluster). A motivating example with N = 4 users and K = 2 clusters. Users receive the global models {wk(t)}k∈[2]
for each cluster from the server, and compute the local loss on each model. Then, each user i ∈ [N ] selects the cluster with the minimum loss, computes a
local gradient gi(t), and sends the encoded gradient to the server. Server decodes the aggregated gradients and updates the global model for each cluster.

guarantees for the global model of each cluster k ∈ [K],
with a limited number of antennas. To this end, we propose
AirCluster, a coordinated gradient compression and zero-
forcing beamforming mechanism for clustered learning, with
provable convergence guarantees for the trained model of each
cluster, while ensuring the resource constraints in the number
of antennas and transmit power of each user. AirCluster builds
on a coordinated zero-forcing precoding approach, where the
precoders are designed to align the local gradients designated
for each cluster over-the-air, while zero-forcing the inter-
ference from other clusters. We next provide the individual
components of AirCluster, which are also illustrated in Fig. 1.
Precoder design. The precoder consists of two components:
1) Gradient compression, and 2) Zero-forcing beamforming.
The former transforms the local gradients to a reduced di-
mensional space, to reduce the number of antennas required
in the later stages. The latter aggregates the compressed
gradients for each cluster over-the-air, while enabling zero-
forcing for the interference received from other clusters. For
gradient compression, we leverage sketching through Gaussian
random projections. Each user compresses its local gradient
gi(t) ∈ Rd by projecting it to a reduced dimensional space
R(t)gi(t) ∈ Rb, using a random Gaussian sketching matrix
R(t) ∈ Rb×d for some b � d such that NR = Kb, where
each element is generated i.i.d from a Gaussian distribution
N (0, σ2

R) with σ2
R = 1

b . R(t) can be determined by the AP
offline and sent to the users prior to training. After com-
pressing the local gradient, each user encodes the compressed
gradient via zero-forcing. The key intuition is to align the
local gradients received from each cluster over-the-air, in a
way that enables the AP to recover the aggregate of the local
gradients for each cluster, when the received signal consists
of the signals received from all clusters. To do so, we define
an NT × b zero-forcing matrix Vi(t) for user i ∈ Ck(t) as,

Vi(t) =
√
Pk(t)H†i (t)Ak (15)

where H†i (t) = Hi(t)
H(Hi(t)Hi(t)

H)−1, and,

Ak =
[
0b×b · · · 0b×b Ib×b 0b×b · · · 0b×b

]T
(16)

is a concatenation of K submatrices of size b×b, where the kth

submatrix is an identity matrix Ib×b, and all other submatrices
are equal to the zero matrix 0b×b. Matrix Ak has full column
rank, and AH

k Ak = Ib×b. Finally, Pk(t) is the transmit power
scaling factor of users i ∈ Ck(t) at training round t, given as,

Pk(t) = min
i∈Ck(t)

PT,i

‖H†i (t)Ak‖2F ‖gi(t)‖2
. (17)

Equation (15) has two key features. First, it aligns the local
gradients received from all users assigned to cluster k, since
(15) guarantees that,

Ak :=
1√
Pk(t)

Hi(t)Vi(t) for all i ∈ Ck(t). (18)

Second, it cancels the inter-cluster interference received from
other clusters, as all users send their local gradients concur-
rently. The final precoder Vi(t) of user i ∈ [N ] is defined
as,

Vi(t) := Vi(t)R(t) =
√
Pk(t)H†i (t)AkR(t) (19)

hence the average transmit power of each user i ∈ Ck(t)
satisfies ER[‖Vi(t)gi(t)‖2] ≤ PT,i. The received signal at
the AP can be written from (12) as,

y(t) =
∑
k∈[K]

∑
i∈Ck(t)

Hi(t)Vi(t)gi(t) + n(t) (20)

=
∑
k∈[K]

√
Pk(t)AkR(t)

( ∑
i∈Ck(t)

gi(t)

)
+ n(t) (21)

Decoder design. After receiving the aggregated signal from
(21), the AP decodes the aggregate of the local gradients for
each cluster k ∈ [K]. The decoding process consists of two
components. The first component is interference cancellation,
to remove the interference received from other clusters. The
second component is decompression of the local gradients,
where the compressed gradients are projected back to Rd. The
decoder for cluster k ∈ [K] is then defined as,

Uk(t) := Uk(t)R(t) (22)
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where Uk(t) is an interference suppression matrix given by,

Uk(t) =
1√
Pk(t)

U0
k

(
AH
k U0

k

)−1
(23)

where U0
k is an NR × b matrix whose columns correspond to

a null-space basis of,

Ak̄ ,
[
A1 · · · Ak−1 Ak+1 · · · AK

]
, (24)

which is a cascaded matrix of Aj for j ∈ [K]\{k}. Matrix
U0
k can be obtained from the Singular Value Decomposition

(SVD) of Ak̄ given by [U1
k U0

k]ΣkB
H
k . Note that the column

vectors of Ak from (16) defines a left null-space of Ak̄ from
(24), as AH

k Ak̄ = 0. Therefore, without loss of generality, we
can let the null subspace of matrix Ak̄ to be U0

k = Ak, where
Ak is as defined in (16), from which we have,

Uk(t) =
1√
Pk(t)

U0
k

(
AH
k U0

k

)−1
=

1√
Pk(t)

Ak

(
AH
k Ak

)−1

=
1√
Pk(t)

Ak (25)

since AH
k Ak = Ib×b. The interference supression matrix

Uk(t) has two key features:√
Pk(t)U

H

k (t)Ak = Ib×b, (26)

which guarantees intra-cluster model aggregation, i.e., correct
recovery of the aggregate of local gradients for cluster k, and,

U
H

k (t)A1 = · · · = U
H

k (t)Ak−1 = U
H

k (t)Ak+1 = · · ·

= U
H

k (t)AK = 0 (27)

which guarantees inter-cluster interference cancellation from
clusters [K]\{k}. The zero-forcing constraint (27) implies that
UH
k (t) is in the null space of Ak̄ [49]. Finally, multiplication

with RH(t) in (22) decompresses the gradients by projecting
the decoded signal back to Rd. Using (22), the AP decodes the
aggregated local gradients from (13) for each cluster k ∈ [K],

ĝk(t) =
1

|Ck(t)|
UH
k (t)y(t) (28)

= RH(t)R(t)
( 1

|Ck(t)|
∑

i∈Ck(t)

gi(t)
)

+
1√

Pk(t)|Ck(t)|
RH(t)nk(t) (29)

= RH(t)R(t)gk(t) +
1√

Pk(t)|Ck(t)|
RH(t)nk(t)

(30)

where nk for all k ∈ [K] is a b× 1 dimensional vector,

n(t) = [nH1 (t) · · · nHk−1(t) nHk (t) nHk+1(t) · · · nHK(t)]H

Finally, using (29), the AP updates the global model for each
cluster k ∈ [K] as shown in (14). The individual steps of
AirCluster is provided in Algorithm 1. AirCluster can further
be extended to transmission of the compressed gradient over
multiple time slots when b > NR

K , as detailed in Appendix
A-1. In Appendix A-2, we also provide a generalized pre-
coder/decoder design when b < NR

K .

Algorithm 1 AirCluster: Over-the-Air Clustered FL
1: for each cluster k ∈ [K] do
2: Initialize wk(0) . wk(t) is the global model of cluster k at round t
3: for each round t = 0, 1, ...., T − 1 do
4: for each client i ∈ [N ] in parallel do
5: for k ∈ [K] do
6: Compute Fi(wk(t), Ẑi(t)) . Equation (3)
7: Find cluster estimate cit = argmink∈[K] Fi

(
wk(t), Ẑi(t)

)
.

Equation (4)
8: gi(t)← CLIENTUPDATE(i,Zi(t),wcit (t))
9: Send the encoded gradient Vi(t)gi(t) to server . Equation (19)

10: for k ∈ K server do
11: Decode cluster aggregate → ĝk(t) =

1
|Ck(t)|

UH
k (t)y(t) .

Equation (28)
12: Update the cluster global model→ wk(t+1) = wk(t)− ĝk(t)

. Equation (14)
13: Sends the cluster model wk(t+ 1) to the users
14: function CLIENTUPDATE(u,Z,w)
15: g = 0 . Initializing the gradient
16: for i = 1, ...., E do . E is the number of local iterations
17: g← g + η∇Fu(w;Z) . Accumulating gradient
18: w← w − η∇Fu(w;Z) . η is the learning rate

Coordination. To compute Pk(t), users can locally compute
PT,i

‖H†i (t)Ak‖2
F
‖gi(t)‖2

(a scalar), and send it to the AP. The AP

then evaluates Pk(t) from (17), and sends it back to the users
i ∈ Ck(t). Then, each user can compute the precoder from
(15) locally, without any additional communication overhead.
Similarly, the AP can compute the decoders from (23) locally.
In the following, we present the theoretical performance
guarantees and key trade-offs for AirCluster.

V. PERFORMANCE ANALYSIS

The performance of AirCluster is governed by the relation
between the number of receive and transmit antennas, gradient
size and the compression ratio (size of the compressed gra-
dients), and the number of clusters. We first demonstrate the
relation between the minimum number of antennas required
with respect to the model size and the number of clusters.

Theorem 1. In a network of N users, where each user has
NT transmit antennas, along with an AP with NR receive
antennas, over-the-air clustered FL with AirCluster requires
NT ≥ NR ≥ Kb, where K is the number of clusters, and b
is the size of the compressed gradients.

Proof. From (27), the decoder for each cluster k ∈ [K] should
zero-force Aj for all j 6= k, while diagonalizing the aggregate
of the compressed gradients, R(t)gk(t), for the desired cluster
k, where gk(t) is the gradient aggregate for cluster k as defined
in (11). Therefore, to decode the global model of cluster k,
the rank of the null space of Ak̄, which is NR − (K − 1)b,
should be at least b, which is equal to the dimension of
the compressed aggregated gradient R(t)gk(t) for cluster k.
Accordingly, the number of receive antennas should satisfy
NR ≥ Kb. Combined with (18), where the system of linear
equations has a solution if and only if NT ≥ NR, a necessary
condition for the minimum number of transmit and receive
antennas is NT ≥ NR ≥ Kb.

Convergence analysis. We next present the convergence
guarantees of AirCluster. Let T be the number of total training
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(a) Cluster 1. (b) Cluster 2. (c) Cluster 3. (d) Cluster 4. (e) Cluster 5.

Fig. 2. Impact of the cluster heterogeneity (number of users per cluster) on the model performance (CIFAR-10).

(a) Cluster 1. (b) Cluster 2. (c) Cluster 3. (d) Cluster 4. (e) Cluster 5.

Fig. 3. AirCluster vs FL baselines with [|C∗1 |, |C∗2 |, |C∗3 |, |C∗4 |, |C∗5 |] = [5, 5, 5, 5, 5] users across the clusters (CIFAR-10).

iterations, and |Di| = D ∀i ∈ [N ]. For the theoretical analysis,
we consider a random partitioning of the local dataset of each
user into 2T disjoint segments, where each segment contains
D′ = D

2T data points. For user i ∈ [N ], the segments are
denoted by Ẑi(0), . . . , Ẑi(T − 1) and Zi(0), . . . ,Zi(T − 1),
where Ẑi(t) is used for cluster estimation and Zi(t) is used
to compute the local gradient at iteration t. Doing so allows
cluster estimation and gradient computation to be performed
on independent sets of data points. For tractability of theo-
retical analysis, in this section we let E = 1, along the line
of [19]. We next state a few technical assumptions [19], [20],
[21], [47], [50].

Assumption 1. (Smoothness and convexity) The global
loss function Fk for cluster k ∈ [K] in (1) is λ-
strongly convex, i.e., for all w,w′, Fk(w′) ≥ Fk(w) +
〈∇Fk(w),w′ −w〉+ λ

2 ‖w
′ −w‖2, and L-smooth, Fk(w′) ≤

Fk(w) + 〈∇Fk(w),w′ −w〉+ L
2 ‖w

′ −w‖2.

Note that convexity and smoothness is not imposed on the
local loss function of any user.

Assumption 2. (Bounded loss variance) For any w and k ∈
[K], the variance of the stochastic loss f(w; ξ) is bounded,
i.e., Eξ∼Pk

[
(f(w; ξ)− Fk(w))

2
]
≤ µ2 for some µ > 0.

Assumption 3. (Bounded gradient variance) For any w and
k ∈ [K], variance of stochastic gradient∇f(w; ξ) is bounded,
i.e., Eξ∼Pk

[
‖∇f(w; ξ)−∇Fk(w)‖2

]
≤ v2 for some v > 0.

The next assumption defines a good initialization wk(0) of
the global models k ∈ [K], and that the iterates stay within a
bounded region around w∗k. To this end, let,

∆ := min
k 6=k′
‖w∗k −w∗k′‖ , (31)

where w∗k is the optimal model for k ∈ [K] from (2), and

p := min
k∈[K]

pk where pk :=
|C∗k |
N

. (32)

Assumption 4. Let w∗k be the optimal model for cluster k ∈
[K] from (2). Then, maxk∈[K] ‖w∗k‖ . 1, ‖wk(t) − w∗k‖ ≤
( 1

2−α)
√

λ
L∆, where 0 < α < 1

2 , D′ & Kµ2

α2λ2∆4 , p & log(ND′)
N

and E
[∥∥H†i (t)Ak

∥∥2

F

]
≤ Hmax.

Theorem 2. (Convergence) In a network with N users and K
clusters, let w∗k be the optimal model for cluster k ∈ [K] as
defined in (2). After T training rounds, with a learning rate,

η = min

{
1

6Ldb (K + 2)
,

1

LHmaxPmin
dσ2

n

}
(33)

where Pmin := mini∈[N ] PT,i, the global model wk(T ) of
cluster k ∈ [K] satisfies,

E [Fk(wk(T ))− Fk(w∗k)]

≤
(

1− λη

2

)T
E [Fk(wk(0))− Fk(w∗k)]

+
1

λ
(K + 1)

( 4v2

pND′
+

16c1µ
2

α2λ2∆4p2N

v2

(D′)2

+ 320L2 c1µ
2

p2α2λ2∆4D′

)
+

1

2λ

( 4

pN

v2

D′
+

144c1µ
2

p2α2λ2∆4D′
L2

+
16

p2
c1

µ2v2

α2λ2∆4(D′)2N

)
+

1

λ

16

p2N2

(
9L2 +

v2

D′

)
(34)

with probability at least 1− 2TKe−cpN for some c, c1 > 0.

Proof. The proof is provided in Appendix B.

Remark 1. In (34), the first term vanishes as T increases,
as 1 − λη

2 < 1 from (33). The remaining terms represent an
optimality gap of O

(
1

pND′ + 1
p2D′ + 1

p2N2

)
. Specifically, the

second term in (34) is due to clustering (heterogeneity in data
distributions), whereas the third term is due to the variance
of the compression-decompression mechanism and the fourth
term is due to the channel noise. By setting D′ = Θ(N2), the
optimality gap of AirCluster is O

(
1

p2N2

)
, which is of the same

order as the optimality gap of conventional clustered FL [19].
Since p & log(ND′)

N (Assumption 4), choosing D′ = Θ(N2)
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(a) Cluster 1. (b) Cluster 2. (c) Cluster 3. (d) Cluster 4. (e) Cluster 5.

Fig. 4. AirCluster vs FL baselines with [|C∗1 |, |C∗2 |, |C∗3 |, |C∗4 |, |C∗5 |] = [15, 3, 3, 2, 2] users across the clusters (CIFAR-10).

(a) Cluster 1. (b) Cluster 2. (c) Cluster 3. (d) Cluster 4. (e) Cluster 5.

Fig. 5. Performance comparison of AirCluster with non-iid FL baselines (CIFAR-10) with Dirichlet distribution.

ensures that the optimality gap O
(

1
log2(ND′)

)
→ 0 as the

number of users N and data samples D′ increase.
Remark 2. As observed from (33), an increased degree of
channel noise (σn), or lower transmit power (Pmin), requires
a smaller learning rate η to achieve the same optimality
gap, which slows down the convergence of the first term in
(34). Moreover, since p & log(ND′)

N , the failure probability
2TKe−cpN → 0 for sufficiently large N and D′.
Remark 3. The number of data samples used for cluster
estimation satisfies D′ & Kµ2

α2λ2∆4 from Assumption 4. As we
demonstrate in Lemma 2 in Appendix B, this ensures that the
probability of incorrect clustering is sufficiently small, which
is a key technical step for the convergence guarantees of the
global model for each cluster.
Remark 4. Compression with the random Gaussian sketching
matrix R(t) ∈ Rb×d ensures two key properties, unbiasedness
and bounded variance, i.e., ER[RT (t)R(t)g(t)] = g(t) and
ER[

∥∥RT (t)R(t)g(t)− g(t)
∥∥2

2
] ≤ 3d

b ‖g(t)‖22 (Lemma 4 in
Appendix B), where g(t) ∈ Rd is the sketched gradient. This
property is utilized in Lemma 6, which is a critical step for
formal convergence guarantees in (34). The first term in the
right hand side of (34) vanishes with T . The remaining terms
represent an optimality gap that diminishes as the number of
users N and data samples D′ increase. This also presents
a trade-off between compression and convergence rate; a
larger compression ratio d

b requires a smaller learning rate
η as shown in (33) to reach the same target accuracy as
conventional clustered FL [19], which can increase the total
number of training rounds to reach the target accuracy.
Theorem 3. (Computation Complexity) The computation com-
plexity of the encoding and compression process is O(N2

RNT+
NT bd) per-user per-round, where NT (NR) is the number
of transmit (receive) antennas, and b (d) is the size of the
compressed (uncompressed) gradient.

Proof. The per-user computation overhead consists of the fol-
lowing components: 1) O(N2

RNT ) to compute Hi(t)H
H
i (t),

2) O(N3
R) to compute (Hi(t)H

H
i (t))−1 using Gauss-

Jordan elimination, 3) O(N2
RNT ) to compute H†i (t) =

HH
i (t)(Hi(t)H

H
i (t))−1, 4) O(d) to compute ‖gi(t)‖2, 5)

O(NT b) to compute ‖H†i (t)Ak‖2F , 6) O(NTNRb) to compute
Vi(t) from (15), 7) O(NT bd) to compute Vi(t)R(t) in (19),
and 8) O(NT d) to compute Vi(t)gi(t).

VI. EXPERIMENTS

Setup. We study image classification on CIFAR-10 [28] and
MNIST [27] datasets, with N = 25 users across K = 5 groups
(clusters), where the local dataset of users within each group
consists of samples from two distinct classes (both datasets
have 10 classes). Training is done using the CNN architectures
from [2], where the gradient size is d = 62006 (CIFAR-
10) and d = 21840 (MNIST), respectively. The remaining
hyperparameters are b = 1000, E = 5, η = 0.0001 with a
batch size of 50, σ2

n = 1, and PT,i = 1000.
User heterogeneity. We first evaluate the model accuracy of
AirCluster with respect to the imbalance in the number of
users across the clusters. In Fig. 2, we present the average test
accuracy of each cluster for varying levels of heterogeneity,
where [|C∗1 |, |C∗2 |, |C∗3 |, |C∗4 |, |C∗5 |] denotes that the number
of users originally belong to cluster k ∈ [K] is |C∗k |. To
ensure a fair comparison, in all scenarios the local dataset
size of each user is 600. In Figs. 3 and 4, we evaluate the
model accuracy of AirCluster with respect to well-known FL
benchmarks, including the conventional FedAvg algorithm
[2] and also heterogeneity-aware baselines Scaffold [51],
FedProx [8], and FedNova [52]. The baselines are evalu-
ated under ideal conditions, without channel noise or compres-
sion, whereas AirCluster is subject to both. We observe from
Fig. 4 that under severe imbalance, AirCluster significantly
outperforms the baselines for the minor clusters (clusters 2-5),
where the data imbalance between the clusters causes severe
data mismatch between the training and test sets, leading to a
catastrophic failure for the minor clusters.
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(a) Cluster 1. (b) Cluster 2. (c) Cluster 3. (d) Cluster 4. (e) Cluster 5.

Fig. 6. Impact of varying D′, the number of data samples per training round on the model performance (CIFAR-10).

(a) Cluster 1. (b) Cluster 2. (c) Cluster 3. (d) Cluster 4. (e) Cluster 5.

Fig. 7. Impact of varying b, the size of the compressed gradient, on the model performance (CIFAR-10).

(a) Cluster 1. (b) Cluster 2. (c) Cluster 3. (d) Cluster 4. (e) Cluster 5.

Fig. 8. Impact of varying SNR on the model performance (CIFAR-10).

We next consider a non-iid data distribution across the users
within each cluster, where the number of samples and the
proportion of samples belonging to each class are unbalanced
[52]. Specifically, the N = 25 users are partitioned into K = 5
clusters, and each cluster k ∈ [K] is assigned to samples from
two distinct classes c ∈ {2(k − 1), 2(k − 1) + 1}. Then, the
data samples from each class is distributed across the users
using a Dirichlet distribution pc = Dir|C∗k |(0.5), where the
ith element pc,i of pc denotes the fraction of samples from
class c assigned to user i ∈ C∗k in cluster k ∈ [K]. In Fig. 5, we
compare the test accuracy with the FL benchmarks, and also
decentralized training, where each user performs training using
its local dataset only. We observe that AirCluster consistently
outperforms all baselines across all clusters.

Impact of the size of data samples. In Fig. 6, we demonstrate
the impact of the size of the data samples D′ used by each user
for cluster estimation and gradient computation. We observe
that the test accuracy for each cluster increases as D′ increases.
This observation also aligns with Remark 1, that the optimality
gap (in convergence) decreases as D′ increases.

Varying degree of compression. In Fig. 7, we demon-
strate the impact of gradient compression on model perfor-
mance, by varying the size of the compressed gradient as
b ∈ {1000, 100, 50} and comparing the test accuracy with
respect to training with uncompressed gradients (the ideal case
[19] without compression or channel noise, which represents
our target accuracy). We observe that compressed gradients
achieve comparable accuracy to uncompressed gradients.

Channel noise. We next demonstrate the impact of channel
noise on model accuracy. In Fig. 8, we report the average test

accuracy of users within each cluster with varying average
receive SNR, by varying the maximum average transmit power
constraint. The maximum average transmit power constraints
used are 1000, 300, 100, 40, which result in 15dB, 5dB, −5dB
and −15dB receive SNRs respectively. As expected, higher
SNR provides increased robustness against the channel noise,
hence increasing the model performance for each cluster.
Fixed channel vs varying channel. In Fig. 9, we let b = 50
and compare the model performance when the channel coef-
ficients Hi(t) are: 1) fixed across all training rounds t ∈ [T ],
and 2) varying across different training rounds. As we observe,
both settings achieve comparable test accuracy.
Impact of imperfect CSI. We next study the impact of CSI
accuracy on training, by investigating the model performance
under noisy (imperfect) CSI. In Fig. 10, we present the impact
of imperfect CSI, where the estimated channel is subject to
additive complex Gaussian noise CN (0, σ2

h), by varying the
noise power σ2

h. We observe that the model convergence is
robust against imperfect CSI, and model performance (test
accuracy) increases as noise level decreases.
Computation and communication overhead. We next an-
alyze the impact of gradient compression on the total com-
putation overhead of each user. The communication cost per
training round increases as b increases, however, a larger b can
also speed up convergence, leading to less computation overall
to reach a desired accuracy. In Fig. 11, we demonstrate this
trade-off between the per-round communication cost and the
total computation cost (with respect to the total number of
multiply-add (MAD) operations to reach 75% accuracy).

MNIST dataset. Fig. 12 presents the average test accuracy
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(a) Cluster 1. (b) Cluster 2. (c) Cluster 3. (d) Cluster 4. (e) Cluster 5.

Fig. 9. Performance analysis of varying channel vs fixed channel across training rounds (CIFAR-10).

(a) Cluster 1. (b) Cluster 2. (c) Cluster 3. (d) Cluster 4. (e) Cluster 5.

Fig. 10. Impact of imperfect CSI on the model accuracy (CIFAR-10).

Fig. 11. Total computation cost to reach target accuracy vs per-round
communication cost of AirCluster (CIFAR-10).

for the (simpler) MNIST dataset, with respect to FL baselines.
We observe that AirCluster again outperforms the baselines.

Remark 5. When no prior knowledge is available on the
user distributions (e.g., demographic information), the number
of clusters K can be treated as a hyperparameter, which
can be tuned by increasing K until empty clusters start to
appear [19]. Then, the number of clusters K can be set to the
maximum value for which no empty clusters emerge.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

This work proposes over-the-air personalized FL for com-
munication efficient distributed learning under heterogeneous
settings. We introduce AirCluster, to train concurrent models
over-the-air, each one adapted to a group of users with similar
data characteristics. We provide the theoretical convergence
guarantees of AirCluster under limited resources, and present
extensive numerical experiments to demonstrate its perfor-
mance with respect to multiple benchmarks.

Future directions include digital over-the-air clustered learn-
ing, as well as training under dynamic and time-varying data
distributions, and integrating our framework with resource
heterogeneities, energy constraints [53], and learning-based
reconstruction techniques for compressed sensing [54]. Other
directions include extending our analysis to non-convex global
objective functions and minimizing the impact of channel
noise and imperfect channel estimation [55]. In scenarios
where a large number of receive antennas is available, the
additional antennas can be further allocated to increase the
diversity gain for enhanced network reliability or for handling

complementary tasks, such as benign communication or sens-
ing, which are also interesting future directions.

APPENDIX A
GENERALIZED AIRCLUSTER FOR FLEXIBLE COMPRESSION

In this section, we present the generalization of AirCluster
for flexible compression ratios.

1) For compression parameter b > NR
K : We first discuss

the scenario with b > NR
K , to accommodate very large models

in practice, by utilizing multiple time slots for transmission.
We first define the compressed gradient of user i ∈ [N ] at
training round t as,

g̃i(t) , R(t)gi(t) ∈ Rb×1 (35)

partitioned into s , bK/NR equal-sized shards,

g̃i(t) =
[
g̃T
i (t, 1) · · · g̃T

i (t, s)
]T
, (36)

where each shard of size b′ , b/s is sent over a single
time slot. We next define R(t, t′) ∈ Rb′×d to represent the
submatrix of R(t) that contains b′ rows of R(t) such that,

g̃i(t, t
′) = R(t, t′)gi(t) (37)

hence ER[RH(t, t′)R(t, t′)] = b′

b Id×d, where Id×d is the d×d
identity matrix. Then, the received signal at time slot t′ is,

y(t, t′) =
∑
k∈[K]

∑
i∈Ck(t)

Hi(t, t
′)Vi(t, t

′)g̃i(t, t
′) + n(t, t′)

=
∑
k∈[K]

√
Pk(t, t′)Ak

( ∑
i∈Ck(t)

g̃i(t, t
′)

)
+ n(t, t′)

where Ak is a Kb′ × b′ matrix defined as,

Ak =
[
0b′×b′ · · · 0b′×b′ Ib′×b′ 0b′×b′ · · · 0b′×b′

]T
,

and Hi(t, t
′) is an NR × NT matrix holding the channel

coefficients from user i to the server at time slot t′ of training
round t ∈ [T ], with NR = Kb′, and

Pk(t, t′) = min
i∈Ck(t)

PT,i

‖H†i (t, t′)Ak‖2F
b′

b ‖gi(t)‖2
, (38)
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(a) Cluster 1. (b) Cluster 2. (c) Cluster 3. (d) Cluster 4. (e) Cluster 5.

Fig. 12. Performance comparison of AirCluster with FL baselines in terms of test accuracy (MNIST).

is the transmit power scaling factor of users i ∈ Ck(t) at time
slot t′ of training round t. Vi(t, t

′) =
√
Pk(t, t′)H†i (t, t

′)Ak

is an NT × b′ zero forcing matrix for user i ∈ Ck(t)
such that the average transmit power of each user satisfies
ER[‖Vi(t)g̃i(t)‖2] ≤ PT,i, where PT,i is the maximum aver-
age transmit power constraint of user i, and n(t, t′) ∈ RNR×1

denotes the channel noise at time slot t′ of training round t.
Then, the server decodes the compressed gradient aggregate
for cluster k at time slot t′ as,

ĝk(t, t′) =
1

|Ck(t)|
Uk(t, t′)y(t, t′)

=
1

|Ck(t)|
∑

i∈Ck(t)̃

gi(t, t
′) +

1√
Pk(t, t′)|Ck(t)|

nk(t, t′)

where nk(t, t′) is a b′ × 1 dimensional vector such that,

n(t, t′) = [nH1 (t, t′) · · · nHk−1(t, t′) nHk (t, t′)

nHk+1(t, t′) · · · nHK(t, t′)]H (39)

and Uk(t, t′) denotes the interference suppression matrix,

Uk(t, t′) =
1√

Pk(t, t′)
Ak (40)

where √
Pk(t, t′)U

H

k (t, t′)Ak = Ib′×b′ , (41)

which guarantees the correct recovery of the aggregate of the
local gradients for cluster k, and,

U
H

k (t, t′)A1 = · · · = U
H

k (t, t′)Ak−1

= U
H

k (t, t′)Ak+1 = · · · = U
H

k (t, t′)AK = 0

which guarantees interference cancellation from clusters
[K]\{k}. At the end of s time slots, the server concatenates
the decoded signals across all s time slots t′ ∈ [s] to recover
the uncompressed gradient aggregate for training round t,

ĝk(t) =
1

|Ck(t)|
RH(t)

[
ĝT
k(t, 1) · · · ĝT

k(t, s)
]T

= RH(t)R(t)gk(t) +
1

|Ck(t)|
RH(t)Pk(t)nk(t) (42)

where Pk(t) ,
[
1/
√
Pk(t, 1) · · · 1/

√
Pk(t, s)

]
, and

nk(t) ,
[
nHk (t, 1) · · · nHk (t, s)

]H
. Hence, the generalized

framework enables the use of larger compression parameters
b for large models and antenna-limited settings, by increasing
the number of time slots s , bK/NR for transmission as b
increases (required for more complex training tasks), or as NR
decreases (limited number of antennas).

2) Compression parameter b < NR
K : We next discuss the

generalized encoder/decoder structure when b < NR
K , for

which the compressed gradient can be transmitted over a single
time slot at each training round t ∈ [T ]. For the precoders, we
first define an NT × b zero-forcing matrix Vi(t) for each user
i ∈ Ck(t) in cluster k ∈ [K],

Vi(t) =
√
Pk(t)H†i (t)Ak (43)

where Ak is a NR × b random Gaussian matrix where each
element is generated i.i.d. from a standard normal distribution
N (0, 1). Parameter Pk(t) is the transmit power scaling factor
as defined in (17). Then, the final precoder Vi(t) of user i ∈
[N ] is given by (19).

For the decoders, we first define the interference suppression
matrix Uk(t) for each cluster k ∈ [K] as given in (23), which
satisfies the conditions (26) (intra-cluster model aggregation)
and (27) (inter-cluster interference cancellation). Then, the
final decoder is defined as (22). Finally, the aggregate of the
gradients for each cluster k ∈ [K] is decoded as in (30).

APPENDIX B
PROOF OF THEOREM 2

In the following, ER[·] denotes the expectation over the
random compression matrix R, En over the channel noise, EH

over the channel coefficients, Eξ over the random sampling
during training, and ECk over the randomness in clustering
Ck(t). Our proof is inspired by [19], [20], [21]. On the
other hand, due to the channel noise and the compression-
decompression mechanism, the standard convergence analysis
for clustered FL does not apply to our problem (our aggre-
gation rule is also different). As such, in the following we
provide a novel convergence analysis for over-the-air clustered
FL, which bounds the distance between the loss functions for
the optimal vs. trained model of each cluster (as opposed to
bounding the distance between the optimal vs. trained models
directly). By doing so, we can guarantee a vanishing optimality
gap under channel noise and compression in the asymptotic
analysis. We next review a few useful lemmas.
Lemma 1. (Bounded gradient difference, [19]) Let i ∈ C∗k ,
i.e., user i∈ [N ] belongs to cluster k ∈ [K], and Zi∈Di be a
minibatch of D′ samples from the local dataset Di of user i.
Then,

Eξ
[∥∥∇Fk (w)−∇Fi

(
w,Zi

)∥∥2
]
≤ v2

D′
(44)

for any w ∈ Rd, where v is as defined in Assumption 3.
Lemma 2. (Misclustering probability, [19], Lemma 3) Let
Ek,k

′

i (t) be the event that user i belongs to cluster k ∈ [K],
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and classified to cluster k′ ∈ [K] at round t. Then, for any
k′ 6= k, there exists a universal constant c1 such that:

P
(
Ek,k

′

i (t)
)
≤ c1

µ2

α2λ2∆4D′
(45)

Let Ei(t) := Ek,ki (t) be the event that user i is assigned to the
correct cluster. From union bound,

P
(
Ei(t)

)
≤ c1

Kµ2

α2λ2∆4D′
(46)

where Ei(t) := ∪k′∈[K]\{k}Ek,k
′

i (t), ∆ is as defined in (31),
and µ is from Assumption 2.
Lemma 3. (Cluster cardinality, [19]) Let p be as defined
in (32). Then, for any k ∈ [K] and for any t ∈ [T ], the
following holds for some c > 0 with probability at least
1− 2 exp(−cpN):

|Ck(t) ∩ C∗k | ≥
1

4
pN (47)

Lemma 4. (Unbiasedness of sketching, [26], Lemma D.11,
D.13) Let R ∈ Rb×d denote a random Gaussian matrix,
where all entries are sampled i.i.d. from N (0, 1

b ). Then, for
any u, v ∈ Rd, the following holds: 1) ER

[
uTRTRv

]
=

uTv, 2) ER

[(
uTRTRv − uTv

)2] ≤ 3
b‖u‖

2
2 · ‖v‖22, 3)

ER

[
RTRv

]
= v, 4) ER

[∥∥RTRv − v
∥∥2

2

]
≤ 3d

b ‖v‖
2
2.

The next relation is utilized in [19]. For completeness, we
include an analysis for our setting.

Lemma 5. For any k, j ∈ [K] and k 6= j, the following holds
at iteration t ∈ [T ]:

ECk [|Ck(t) ∩ C∗j |] ≤
c1µ

2pjN

α2λ2∆4D′
(48)

ECk [|Ck(t) ∩ C∗j |2] ≤
c1µ

2p2
jN

2

α2λ2∆4D′
(49)

where pj is defined in (32) and c1 is defined in Lemma 2.

Proof. Let U1, . . . , UpjN be the users that truly belong to
cluster j ∈ [K]\{k}. Then,

|Ck(t) ∩ C∗j | = |Ck(t) ∩ (U1 ∪ · · · ∪ UpjN )|
= |Ck(t) ∩ U1|+ · · ·+ |Ck(t) ∩ UpjN | (50)

For all i ∈ [pjN ], we define a Bernoulli random variable,

|Ck(t) ∩ Ui| =

{
1 with probability P

(
Ej,kUi (t)

)
0 otherwise

(51)

where P(Ej,kUi (t)) is the probability that user Ui ∈ C∗j is
misclustered to cluster k (Lemma 2). Then,

ECk [|Ck(t) ∩ Ui|] = ECk [|Ck(t) ∩ Ui|2]

= P
(
Ej,kUi (t)

)
≤ c1µ

2

α2λ2∆4D′
(52)

where (52) follows from (45). Hence,

ECk [|Ck(t) ∩ C∗j |] = ECk
[ pjN∑
i=1

|Ck(t) ∩ Ui|
]

=

pjN∑
i=1

ECk [|Ck(t) ∩ Ui|] ≤ pjN
c1µ

2

α2λ2∆4D′

which follows from (52). Using (52), one can find that,

ECk [|Ck(t) ∩ C∗j |2] = ECk
[( pjN∑

i=1

|Ck(t) ∩ Ui|
)2]

(53)

≤ pjN
pjN∑
i=1

ECk [|Ck(t) ∩ Ui|2] (54)

≤ p2
jN

2 c1µ
2

α2λ2∆4D′
(55)

where (54) holds since ‖
∑n
i=1 ai‖

2 ≤ n
∑n
i=1 ‖ai‖

2 for any
a1, . . . ,an ∈ Rd [47].

On the other hand, due to the channel noise and gradient
compression, the standard convergence analysis for clustered
FL ([19], [20], [21]) does not apply to our over-the-air clus-
tered FL problem. As such, we next introduce a few lemmas
that will be instrumental in our further analysis. The following
lemmas are proved under the condition that

|Ck(t) ∩ C∗k | ≥
1

4
pN (56)

which holds with probability at least 1 − 2 exp(−cpN) ac-
cording to Lemma 3.
Lemma 6. For all clusters k ∈ [K] and for any t ∈ [T ], the
following holds for the desketched (decompressed) gradients
within each cluster k ∈ [K],

ER,ξ,Ck

[∥∥∥ 1

|Ck(t)|
∑

i∈Ck(t)

η∇Fi (wk(t),Zi(t))

−RH(t)R(t)
( 1

|Ck(t)|
∑

i∈Ck(t)

η∇Fi (wk(t),Zi(t))
)∥∥∥2]

≤ 3
d

b
η2(K + 2)

(∥∥∇F1(w1(t))
∥∥2

+
4v2

pND′

+
144c1µ

2

p2α2λ2∆4D′
L2+

16

p2
c1

µ2v2

α2λ2∆4(D′)2N

)
(57)

Proof. Without loss of generality, we prove (57) for k = 1.
Then,

ER,ξ,C1

[∥∥∥ 1

|C1(t)|
∑

i∈C1(t)

η∇Fi (w1(t),Zi(t))

−RH(t)R(t)
( 1

|C1(t)|
∑

i∈C1(t)

η∇Fi (w1(t),Zi(t))
)∥∥∥2]

≤ 3
d

b
Eξ,C1

[∥∥∥ 1

|C1(t)|
∑

i∈C1(t)

η∇Fi (w1(t),Zi(t))
∥∥∥2]

(58)

= 3
d

b
η2Eξ,C1

[ 1

|C1(t)|2
∥∥∥ ∑
i∈C1(t)∩C∗1

∇Fi (w1(t),Zi(t))

+

K∑
j=2

∑
i∈C1(t)∩C∗j

∇Fi (w1(t),Zi(t))
∥∥∥2]

≤ 3
d

b
η2Eξ,C1

[ 1

|C1(t) ∩ C∗1 |2
∥∥∥|C1(t) ∩ C∗1 |∇F1(w1(t))

+
∑

i∈C1(t)∩C∗1

(
∇Fi (w1(t),Zi(t))−∇F1(w1(t))

)
+

K∑
j=2

|C1(t) ∩ C∗j |∇Fj(w1(t))
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+

K∑
j=2

∑
i∈C1(t)∩C∗j

(
∇Fi (w1(t),Zi(t))−∇Fj(w1(t))

)∥∥∥2]
(59)

≤ 3
d

b
η2(K + 2)

(∥∥∇F1(w1(t))
∥∥2

+ Eξ,C1
[ 1

|C1(t) ∩ C∗1 |2

×
∥∥ ∑
i∈C1(t)∩C∗1

(
∇Fi (w1(t),Zi(t))−∇F1(w1(t))

)∥∥2
]

+

K∑
j=2

EC1
[ 1

|C1(t) ∩ C∗1 |2
∥∥|C1(t) ∩ C∗j |∇Fj(w1(t))

∥∥2
]

+ Eξ,C1
[ 1

|C1(t) ∩ C∗1 |2
∥∥∥ K∑
j=2

∑
i∈C1(t)∩C∗j

(
∇Fi (w1(t),Zi(t))

−∇Fj(w1(t))
)∥∥∥2])

(60)

= 3
d

b
η2(K + 2)

(∥∥∇F1(w1(t))
∥∥2

+ Eξ,C1
[ 1

|C1(t) ∩ C∗1 |2

×
∑

i∈C1(t)∩C∗1

∥∥(∇Fi (w1(t),Zi(t))−∇F1(w1(t))
)∥∥2
]

+

K∑
j=2

EC1
[ 1

|C1(t) ∩ C∗1 |2
∥∥|C1(t) ∩ C∗j |∇Fj(w1(t))

∥∥2
]

+

K∑
j=2

Eξ,C1
[ 1

|C1(t) ∩ C∗1 |2
∑

i∈C1(t)∩C∗j

∥∥(∇Fi (w1(t),Zi(t))

−∇Fj(w1(t))
)∥∥2
])

(61)

≤ 3
d

b
η2(K + 2)

(∥∥∇F1(w1(t))
∥∥2

+

K∑
j=2

EC1
[ 1

|C1(t) ∩ C∗1 |2

× |C1(t) ∩ C∗j |
] v2

D′
+ EC1

[ 1

|C1(t) ∩ C∗1 |

] v2

D′

+

K∑
j=2

EC1
[ 1

|C1(t) ∩ C∗1 |2
∥∥|C1(t) ∩ C∗j |∇Fj(w1(t))

∥∥2
])

(62)

≤ 3
d

b
η2(K + 2)

(∥∥∇F1(w1(t))
∥∥2

+
4

pN

v2

D′

+
16

p2N2

K∑
j=2

EC1 [|C1(t) ∩ C∗j |2]
∥∥∇Fj(w1(t))

∥∥2

+
16

p2N2

K∑
j=2

EC1 [|C1(t) ∩ C∗j |]
v2

D′

)
(63)

≤ 3
d

b
η2(K + 2)

(∥∥∇F1(w1(t))
∥∥2

+
4

pN

v2

D′

+
16

p2N2

K∑
j=2

EC1 [|C1(t) ∩ C∗j |2]L2
∥∥w1(t)−w∗j

∥∥2

+
16

p2N2

K∑
j=2

EC1 [|C1(t) ∩ C∗j |]
v2

D′

)
(64)

≤ 3
d

b
η2(K + 2)

(∥∥∇F1(w1(t))
∥∥2

+
4

pN

v2

D′

+
16

p2N2

K∑
j=2

EC1 [|C1(t) ∩ C∗j |2]9L2

+
16

p2N2

K∑
j=2

EC1 [|C1(t) ∩ C∗j |]
v2

D′

)
(65)

≤ 3
d

b
η2(K + 2)

(∥∥∇F1(w1(t))
∥∥2

+
4

pN

v2

D′

+
16

p2N2
c1

µ2N2

α2λ2∆4D′
9L2 +

16

p2N2
c1

µ2N

α2λ2∆4D′
v2

D′

)
(66)

= 3
d

b
η2(K + 2)

(∥∥∇F1(w1(t))
∥∥2

+
4

pN

v2

D′

+
144c1
p2

µ2

α2λ2∆4D′
L2 +

16

p2
c1

µ2v2

α2λ2∆4(D′)2N

)
(67)

where (58) follows from Lemma 4; (59) holds since |C1(t)| ≥
|C1(t)∩C∗1 |, (60) holds since ‖

∑n
i=1 ai‖

2 ≤ n
∑n
i=1 ‖ai‖

2 for
any a1, . . . ,an ∈ Rd [47]; (61) holds since Eξ [∇Fi(w, ξ)] =
∇Fj(w) for all i ∈ C∗j and ξ ∈ Di; (62) follows from Lemma
1; (63) follows from (56); (64) follows from Assumption 1.
In (65), we leverage Assumption 4 as follows,∥∥w1(t)−w∗j

∥∥ ≤ ‖w∗j‖+ ‖w∗1‖+‖w1(t)−w∗1‖ (68)

≤1+1+
(1

2
−α
)√λ

L
× 2≤3 (69)

since λ ≤ L according to Assumption 1 (convexity and
smoothness) and

∆ := min
k 6=k′
‖w∗k −w∗k′‖ ≤ min

k 6=k′
(‖w∗k‖+ ‖w∗k′‖) . 2. (70)

Finally (66) follows from Lemma 5.

Lemma 7. For all k ∈ [K], the following holds for the
received noise (after desketching),

EH,R,n,ξ

[ 1

Pk(t)

∥∥RH(t)nk(t)
∥∥2
]

≤ Hmax

Pmin
dσ2

nη
2

(
9L2 +

v2

D′

)
(71)

where Pmin := mini∈[N ] PT,i and Hmax is the upper bound of
EH

∥∥H†i (t)Ak

∥∥2

F
as defined in Assumption 4, whereas nk(t)

is a b × 1 dimensional vector from (31), Pk(t) is defined in
(17), and Ak is given in (18).

Proof. First, note that ER,n

[ ∥∥RH(t)nk(t)
∥∥2 ]

= dbσ2
Rσ

2
n =

dσ2
n. From (17), we observe that,

Pk(t) = min
i∈Ck(t)

PT,i∥∥H†i (t)Ak

∥∥2

F
‖gi(t)‖

2

≥ Pmin∥∥H†i (t)Ak

∥∥2

F
maxi∈Ck(t) ‖η∇Fi(wk(t),Zi(t))‖2

Let u ∈ Ck(t) be the user such that

‖η∇Fu(wk(t),Zu(t))‖2 = max
i∈Ck(t)

‖η∇Fi(wk(t),Zi(t))‖2

and let u ∈ C∗j for some j ∈ [K]. Then,

EH,R,n,ξ

[ 1

Pk(t)

∥∥RH(t)nk(t)
∥∥2
]
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≤ 1

Pmin
dσ2

nEH,ξ

[∥∥H†i (t)Ak

∥∥2

F

× max
i∈Ck(t)

‖η∇Fi(wk(t),Zi(t))‖2
]

(72)

≤ Hmax

Pmin
dσ2

nη
2Eξ
[
‖∇Fj(wk(t)) +∇Fu(wk(t),Zu(t))

−∇Fj(wk(t))‖2
]

(73)

=
Hmax

Pmin
dσ2

nη
2
(
‖∇Fj(wk(t))‖2+ Eξ

[
‖∇Fu(wk(t),Zu(t))

−∇Fj(wk(t))‖2
])

(74)

≤ Hmax

Pmin
dσ2

nη
2

(
L2‖wk(t)−w∗j‖2 +

v2

D′

)
(75)

≤ Hmax

Pmin
dσ2

nη
2

(
9L2 +

v2

D′

)
(76)

where (73) follows from Assumption 4, (74) is from the un-
biasedness of local gradients, and Eξ[∇Fu(wk(t),Zu(t))] =
∇Fj(wk(t)); (75) is from Lemma 1 and Assumption 1; (76)
is from Assumption 4 and from (70). Finally,

‖wk(t)−w∗j‖ = ‖wk(t)−w∗k‖

≤
(1

2
− α

)√λ

L
∆ ≤ 1 for j = k (77)

‖wk(t)−w∗j‖ ≤ ‖wk(t)−w∗k‖+ ‖w∗k‖+ ‖w∗j‖

≤
(1

2
− α

)√λ

L
∆+1+1 ≤ 3 for j 6= k (78)

Lemma 8. For all clusters k ∈ [K] and for any t ∈ [T ], the
squared-difference of the average of the local gradients within
cluster k and the gradient of the cluster loss function Fk(·)
can be bounded in expectation as follows:

Eξ,Ck
[∥∥∇Fk (wk(t))− 1

|Ck(t)|
∑

i∈Ck(t)

∇Fi (wk(t),Zi(t))
∥∥2]

≤ (K + 1)
( 4v2

pND′
+

16c1µ
2

α2λ2∆4p2N

v2

(D′)2

+ 320L2 c1µ
2

p2α2λ2∆4D′

)
(79)

Proof. Without loss of generality, assume k = 1. Then,

Eξ,C1
[∥∥∇F1 (w1(t))− 1

|C1(t)|
∑

i∈C1(t)

∇Fi (w1(t),Zi(t))
∥∥2]

= Eξ,C1
[∥∥∥∇F1 (w1(t))− 1

|C1(t)|
∑

i∈C1(t)∩C∗1

∇Fi (w1(t),Zi(t))

− 1

|C1(t)|

K∑
j=2

∑
i∈C1(t)∩C∗j

(∇Fi(w1(t),Zi(t))−∇Fj(w1(t)))

− 1

|C1(t)|

K∑
j=2

∑
i∈C1(t)∩C∗j

∇Fj (w1(t))
∥∥∥2]

= Eξ,C1
[ 1

|C1(t)|2
∥∥∥ ∑
i∈C1(t)∩C∗1

(
∇F1 (w1(t))−∇Fi (w1(t),Zi(t))

)
−

K∑
j=2

∑
i∈C1(t)∩C∗j

(
∇Fi (w1(t),Zi(t))−∇Fj (w1(t))

)

+

K∑
j=2

|C1(t) ∩ C∗j |
(
∇F1 (w1(t))−∇Fj (w1(t))

)∥∥∥2]
(80)

≤ (K + 1)Eξ,C1
[ 1

|C1(t)|2
∥∥∥ ∑
i∈C1(t)∩C∗1

(
∇F1 (w1(t))

−∇Fi (w1(t),Zi(t))
)∥∥∥2

+
1

|C1(t)|2
∥∥∥ K∑
j=2

∑
i∈C1(t)∩C∗j

(
∇Fi (w1(t),Zi(t))

−∇Fj (w1(t))
)∥∥∥2

+
1

|C1(t)|2
K∑
j=2

‖|C1(t) ∩ C∗j |

×
(
∇F1 (w1(t))−∇Fj (w1(t))

)
‖2
]

(81)

= (K + 1)Eξ,C1
[ 1

|C1(t)|2
∑

i∈C1(t)∩C∗1

‖∇F1 (w1(t))

−∇Fi (w1(t),Zi(t)) ‖2 +
1

|C1(t)|2
K∑
j=2

∑
i∈C1(t)∩C∗j

‖∇Fi (w1(t),Zi(t))−∇Fj (w1(t))‖2

+
1

|C1(t)|2
K∑
j=2

‖|C1(t) ∩ C∗j |

×
(
∇F1 (w1(t))−∇Fj (w1(t))

)
‖2
]

(82)

≤ (K + 1)
(
EC1
[ 1

|C1(t)|2
|C1(t) ∩ C∗1 |

] v2

D′

+

K∑
j=2

EC1
[ 1

|C1(t)|2
|C1(t) ∩ C∗j |

] v2

D′

+

K∑
j=2

EC1
[ 1

|C1(t)|2
‖|C1(t) ∩ C∗j |

×
(
∇F1 (w1(t))−∇Fj (w1(t))

)
‖2
])

(83)

≤ (K + 1)
(
EC1
[ 1

|C1(t) ∩ C∗1 |

] v2

D′

+

K∑
j=2

EC1
[ 1

|C1(t) ∩ C∗1 |2
|C1(t) ∩ C∗j |

] v2

D′

+

K∑
j=2

EC1
[ 1

|C1(t) ∩ C∗1 |2
‖|C1(t) ∩ C∗j |

×
(
∇F1 (w1(t))−∇Fj (w1(t))

)
‖2
])

(84)

≤ (K + 1)
( 4

pN

v2

D′
+

K∑
j=2

16

p2N2
EC1
[
|C1(t) ∩ C∗j |

] v2

D′

+

K∑
j=2

16

p2N2
EC1
[
‖|C1(t) ∩ C∗j |

(
∇F1 (w1(t))

−∇Fj (w1(t))
)
‖2
])

(85)

≤ (K + 1)
( 4

pN

v2

D′
+

K∑
j=2

16

p2N2
EC1
[
|C1(t) ∩ C∗j |

] v2

D′
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+

K∑
j=2

16

p2N2
EC1
[
|C1(t) ∩ C∗j |2

]
2
(∥∥∇F1 (w1(t))

∥∥2

+
∥∥∇Fj (w1(t))

∥∥2))
(86)

≤ (K + 1)
( 4

pN

v2

D′
+

K∑
j=2

16

p2N2
EC1
[
|C1(t) ∩ C∗j |

] v2

D′

+

K∑
j=2

16

p2N2
EC1
[
|C1(t) ∩ C∗j |2

]
2L2

(∥∥w1(t)−w∗1
∥∥2

+
∥∥w1(t)−w∗j

∥∥2))
(87)

≤ (K + 1)
( 4

pN

v2

D′
+

16

p2N2

c1µ
2N

α2λ2∆4

v2

(D′)2

+
16

p2N2

c1µ
2N2

α2λ2∆4D′
2L2(1 + 9)

)
(88)

where (81), (86) hold since ‖
∑n
i=1 ai‖

2 ≤ n
∑n
i=1 ‖ai‖2 for

any a1, . . . ,an ∈ Rd [47]; (82) is from the unbiasedness of the
local loss function Eξ [Fi(w, ξ)] = Fj(w) for i ∈ C∗j , ξ ∈ Di;
(83) is from Lemma 1; (84) holds since |C1(t)| ≥ |C1(t)∩C∗1 |;
(85) is from (56); (87) is from Assumption 1; (88) is from
(77), (78), Lemma 5, which concludes the proof.

Using the above lemmas, we next proceed with the conver-
gence. Without loss of generality, we consider cluster 1 (same
analysis holds for all clusters). From the smoothness of the
loss functions in Assumption 1 and by taking the expectation
over all randomness (denoted by E[·]),
E [F1 (w1(t+ 1))] ≤ E [F1 (w1(t))]

+ E [〈∇F1 (w1(t)) ,w1(t+ 1)−w1(t)〉]

+
L

2
E
[
‖w1(t+ 1)−w1(t)‖2

]
(89)

From (56) and Assumption 4, we then have,
E
[
‖w1(t+ 1)−w1(t)‖2

]
= E

[∥∥∥RH(t)R(t)
( 1

|C1(t)|
∑

i∈C1(t)

η∇Fi (w1(t),Zi(t))
)

+
1

|C1(t)|
√
P1(t)

RH(t)n1(t)
∥∥∥2]

(90)

= E
[∥∥∥RH(t)R(t)

( 1

|C1(t)|
∑

i∈C1(t)

η∇Fi (w1(t),Zi(t))
)

− 1

|C1(t)|
∑

i∈C1(t)

η∇Fi (w1(t),Zi(t))

+
1

|C1(t)|
∑

i∈C1(t)

η∇Fi (w1(t),Zi(t))

+
1

|C1(t)|
√
P1(t)

RH(t)n1(t)
∥∥∥2]

(91)

= E
[∥∥∥RH(t)R(t)

( 1

|C1(t)|
∑

i∈C1(t)

η∇Fi (w1(t),Zi(t))
)

− 1

|C1(t)|
∑

i∈C1(t)

η∇Fi (w1(t),Zi(t))
∥∥∥2]

+ E
[∥∥∥ 1

|C1(t)|
∑

i∈C1(t)

η∇Fi (w1(t),Zi(t))
∥∥∥2]

+ E
[∥∥∥ 1

|C1(t)|
√
P1(t)

RH(t)n1(t)
∥∥∥2]

(92)

≤ 3
d

b
η2(K + 2)

(
E
[
‖∇F1 (w1(t))‖2

]
+

4

pN

v2

D′

+
144c1
p2

µ2

α2λ2∆4D′
L2 +

16c1
p2

µ2v2

α2λ2∆4(D′)2N

)
+ E

[∥∥∥ 1

|C1(t)|
∑

i∈C1(t)

η∇Fi (w1(t),Zi(t))
∥∥∥2]

+
16

p2N2

Hmax

Pmin
dσ2

nη
2
(

9L2 +
v2

D′

)
(93)

where (92) follows from the unbiasedness of sketching from
Lemma 4 and that En[n1(t)] = 0, and (93) follows from
Lemmas 6-7 and (56). We further find that,
E [〈∇F1 (w1(t)) ,w1(t+ 1)−w1(t)〉] (94)

= −E
[〈
∇F1 (w1(t)) ,RH(t)R(t)

×
( 1

|C1(t)|
∑

i∈C1(t)

η∇Fi (w1(t),Zi(t))
)

+
1

|C1(t)|
√
P1(t)

RH(t)n1(t)
〉]

(95)

= −E
[〈
∇F1 (w1(t)) ,RH(t)R(t)

×
( 1

|C1(t)|
∑

i∈C1(t)

η∇Fi (w1(t),Zi(t))
)

− 1

|C1(t)|
∑

i∈C1(t)

η∇Fi (w1(t),Zi(t))
〉

+
〈
∇F1 (w1(t)) ,

1

|C1(t)|
∑

i∈C1(t)

η∇Fi (w1(t),Zi(t))
〉

+
〈
∇F1 (w1(t)) ,

1

|C1(t)|
√
P1(t)

RH(t)n1(t)
〉]

(96)

= −ηE
[〈
∇F1 (w1(t)) ,

1

|C1(t)|
∑

i∈C1(t)

∇Fi (w1(t),Zi(t))
〉]

(97)

= −1

2
ηE
[
‖∇F1 (w1(t))‖2

+
∥∥∥ 1

|C1(t)|
∑

i∈C1(t)

∇Fi (w1(t),Zi(t))
∥∥∥2

−
∥∥∥∇F1 (w1(t))

− 1

|C1(t)|
∑

i∈C1(t)

∇Fi (w1(t),Zi(t))
∥∥∥2]

(98)

where (97) follows from the unbiasedness of sketch-
ing from Lemma 4 and that En[n1(t)] = 0. Equation
(98) holds since, for any vector a ∈ Rd, 〈a1,a2〉 =
1
2

(
‖a1‖2 + ‖a2‖2 − ‖a1 − a2‖2

)
[56]. Using (93) and (98),

we rewrite (89) as follows,
E [F1 (w1(t+ 1))]

≤ E [F1 (w1(t))]

− η − η2L

2
E
[∥∥∥ 1

|C1(t)|
∑

i∈C1(t)

∇Fi (w1(t),Zi(t))
∥∥∥2]

− η

2
E
[
‖∇F1 (w1(t))‖2

]
+
η

2
E
[∥∥∥∇F1 (w1(t))
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− 1

|C1(t)|
∑

i∈C1(t)

∇Fi (w1(t),Zi(t))
∥∥∥2]

+
L

2

3d

b
η2(K + 2)

×
(
E
[
‖∇F1 (w1(t))‖2

]
+

4

pN

v2

D′
+

144c1
p2

µ2

α2λ2∆4D′
L2

+
16c1µ

2v2

p2α2λ2∆4(D′)2N

)
+
L

2

16Hmax

p2N2Pmin
dσ2

nη
2

(
9L2 +

v2

D′

)
≤ E [F1(w1(t))]−

(η
2
−L3

2

d

b
η2(K + 2)

)
E
[
‖∇F1 (w1(t))‖2

]
+
η

2
E
[∥∥∥∇F1 (w1(t))− 1

|C1(t)|
∑

i∈C1(t)

∇Fi (w1(t),Zi(t))
∥∥∥2]

+ L
3

2

d

b
η2(K + 2)

( 4

pN

v2

D′
+

144c1
p2

µ2

α2λ2∆4D′
L2

+
16c1
p2

µ2v2

α2λ2∆4(D′)2N

)
+

8LHmax

p2N2Pmin
dσ2

nη
2

(
9L2 +

v2

D′

)
(99)

≤ E [F1(w1(t))]−
(η

2
−L3

2

d

b
η2(K + 2)

)
E
[
‖∇F1 (w1(t))‖2

]
+
η

2
(K + 1)

( 4v2

pND′
+

16c1µ
2

α2λ2∆4p2N

v2

(D′)2

+ 320L2 c1µ
2

p2α2λ2∆4D′

)
+ L

3

2

d

b
η2(K + 2)

( 4

pN

v2

D′

+
144c1
p2

µ2

α2λ2∆4D′
L2 +

16c1
p2

µ2v2

α2λ2∆4(D′)2N

)
+

8L

p2N2

Hmax

Pmin
dσ2

nη
2

(
9L2 +

v2

D′

)
(100)

≤ E [F1 (w1(t))]− η

4
E
[
‖∇F1 (w1(t))‖2

]
+
η

2
(K + 1)

×
( 4v2

pND′
+

16c1µ
2

α2λ2∆4p2N

v2

(D′)2
+ 320L2 c1µ

2

p2α2λ2∆4D′

)
+ L

3

2

d

b
η2(K + 2)

( 4

pN

v2

D′
+

144c1
p2

µ2

α2λ2∆4D′
L2

+
16c1
p2

µ2v2

α2λ2∆4(D′)2N

)
+

8LHmax

p2N2Pmin
dσ2

nη
2

(
9L2 +

v2

D′

)
(101)

≤ E [F1 (w1(t))]− λη
2
E [F1(w1(t))− F1(w∗1)]

+
η

2
(K + 1)

( 4v2

pND′
+

16c1µ
2v2

α2λ2∆4p2N(D′)2
+

320L2c1µ
2

p2α2λ2∆4D′

)
+ L

3

2

d

b
η2(K + 2)

( 4

pN

v2

D′
+

144c1
p2

µ2

α2λ2∆4D′
L2

+
16c1µ

2v2

p2α2λ2∆4(D′)2N

)
+

8LHmax

p2N2Pmin
dσ2

nη
2

(
9L2 +

v2

D′

)
(102)

where (99) holds since η ≤ 1
L from (33); (100) holds from

Lemma 8; (101) is from (33); and (102) is from Assumption 1.
Next, after generating (102) for t = T − 1 and subtracting
F1(w∗1) from both sides, we observe,

E [F1(w1(T ))− F1(w∗1)]

≤ (1− λη

2
)E [F1(w1(T − 1))− F1(w∗1)]

+
η

2
(K + 1)

( 4v2

pND′
+

16c1µ
2

α2λ2∆4p2N

v2

(D′)2

+
320L2c1µ

2

p2α2λ2∆4D′

)
+ L

3

2

d

b
η2(K + 2)

( 4

pN

v2

D′

+
144c1
p2

µ2

α2λ2∆4D′
L2 +

16c1
p2

µ2v2

α2λ2∆4(D′)2N

)
+

8LHmax

p2N2Pmin
dσ2

nη
2

(
9L2 +

v2

D′

)
(103)

≤ (1− λη
2

)TE [F1(w1(0))− F1(w∗1)]

+

T−1∑
t=0

(1− λη

2
)t

(
η

2
(K + 1)

( 4v2

pND′
+

16c1µ
2

α2λ2∆4p2N

v2

(D′)2

+ 320L2 c1µ
2

p2α2λ2∆4D′

)
+ L

3

2

d

b
η2(K + 2)

( 4

pN

v2

D′

+
144c1
p2

µ2

α2λ2∆4D′
L2 +

16c1
p2

µ2v2

α2λ2∆4(D′)2N

)
+

8L

p2N2

Hmax

Pmin
dσ2

nη
2

(
9L2 +

v2

D′

))
(104)

= (1− λη

2
)TE [F1(w1(0))− F1(w∗1)] +

1− (1− λη
2 )T−1

1− (1− λη
2 )

×

(
η

2
(K + 1)

( 4v2

pND′
+

16c1µ
2

α2λ2∆4p2N

v2

(D′)2

+ 320L2 c1µ
2

p2α2λ2∆4D′

)
+ L

3

2

d

b
η2(K + 2)

( 4

pN

v2

D′

+
144c1
p2

µ2

α2λ2∆4D′
L2 +

16c1
p2

µ2v2

α2λ2∆4(D′)2N

)
+

8L

p2N2

Hmax

Pmin
dσ2

nη
2

(
9L2 +

v2

D′

))
(105)

≤ (1− λη

2
)TE [F1(w1(0))− F1(w∗1)] +

2

λη

(
η

2
(K + 1)

×
( 4v2

pND′
+

16c1µ
2

α2λ2∆4p2N

v2

(D′)2
+ 320L2 c1µ

2

p2α2λ2∆4D′

)
+ L

3

2

d

b
η2(K + 2)

( 4

pN

v2

D′
+

144c1
p2

µ2

α2λ2∆4D′
L2

+
16c1
p2

µ2v2

α2λ2∆4(D′)2N

)
+

8L

p2N2

Hmax

Pmin
dσ2

nη
2

(
9L2 +

v2

D′

))
(106)

= (1− λη

2
)TE [F1(w1(0))− F1(w∗1)] +

1

λ
(K + 1)

×
( 4v2

pND′
+

16c1µ
2

α2λ2∆4p2N

v2

(D′)2
+ 320L2 c1µ

2

p2α2λ2∆4D′

)
+ 3

L

λ

d

b
η(K + 2)

( 4

pN

v2

D′
+

144c1
p2

µ2
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L2

+
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p2
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2v2
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)
+
L

λ
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dσ2
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(
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v2

D′
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2
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1
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+
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+

1
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+
16

p2

c1µ
2v2

α2λ2∆4(D′)2N

)
+

1

λ

16

p2N2

(
9L2 +

v2

D′

)
(107)

where (104) follows from recursively expressing
E [F1(w1(t+ 1))− F1(w∗1)] using (102); (106) holds
since 1−(1−λη2 )T−1

1−(1−λη2 )
≤ 1

1−(1−λη2 )
; and (107) follows from

(33). Note that (107) is conditioned on |C1(t) ∩ C∗1 | ≥ 1
4pN ,

which holds with probability at least 1 − 2 exp(−cpN) for
each cluster at any round. Then, from the union bound,
convergence is guaranteed within an optimality gap of no
greater than O

(
1

pND′ + 1
p2N2 + 1

p2D′

)
with probability at

least 1− 2KT exp(−cpN) ∀k ∈ [K].
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[1] H. U. Sami and B. Güler, “Over-the-air personalized federated learning,”
in IEEE Int. Conf. on Acoustics, Speech and Sig. Proc. (ICASSP), 2022.

[2] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Int. Conf. on Artificial Int. and Stat. (AISTATS), 2017.

[3] P. Kairouz and H. B. McMahan, “Advances and open problems in
federated learning,” Found. and Trends in Machine Learn., vol. 14, 2021.

[4] M. Mohammadi Amiri and D. Gündüz, “Machine learning at the
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functions analog-computable via wireless multiple-access channels,” in
International Symposium on Wireless Communication Systems, 2011.

[32] M. Goldenbaum and S. Stanczak, “Robust analog function computation
via wireless multiple-access channels,” IEEE Trans. on Comm., 2013.

[33] O. Salehi-Abari, H. Rahul, and D. Katabi, “Over-the-air function com-
putation in sensor networks,” ArXiv, 2016.

[34] G. Zhu and K. Huang, “Mimo over-the-air computation for high-
mobility multimodal sensing,” IEEE Internet of Things Journal, 2019.

[35] D. Wen, G. Zhu, and K. Huang, “Reduced-dimension design of mimo
over-the-air computing for data aggregation in clustered iot networks,”
IEEE Trans. on Wireless Comm., vol. 18, no. 11, pp. 5255–5268, 2019.
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