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Abstract—Power allocation in cell-based massive MIMO net-
works has been studied extensively in recent years. One major
bottleneck for traditional optimization techniques for massive
MIMO power allocation is the processing time. Recently, feder-
ated learning (FL) has been leveraged to address this challenge,
by training a machine learning model for optimal power allo-
cation, where the model is trained using the channel dynamics
across distributed parties. However, current FL mechanisms train
a single model to serve all users, which often fails to perform
consistently across all scenarios, particularly when the training
dataset exhibits high heterogeneity. To address the demands
of real-time systems under heterogeneous network conditions,
we propose clustered FL for massive MIMO power allocation,
where the training mechanism is aimed at achieving max-min
fairness of downlink spectral efficiency across heterogeneous
network dynamics. To do so, personalized models are trained
for different clusters of user equipments (UEs) with similar
channel dynamics. A sample-efficient contextual multi-armed
bandit (CMAB) mechanism is then implemented to accelerate
the clustered FL training process. Our experiments demonstrate
that the proposed distributed learning framework improves the
convergence rate significantly compared to heterogeneity-agnostic
FL mechanisms, while enhancing robustness to noisy datasets.

Index Terms—Clustered federated learning, contextual multi-
armed bandits, power allocation, massive MIMO.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) networks
represent a specialized form of MIMO technology, charac-
terized by the deployment of a significantly larger number
of antennas at the transmitter compared to the number of
users they support [1]–[3]. Massive MIMO typically operates
in time-division duplexing (TDD) mode, where the uplink
and downlink signals are transmitted on the same frequency
band but in different time frames, thereby maintaining chan-
nel reciprocity. In doing so, the channel can be estimated
once for each coherence period. Massive MIMO enhances
spectral efficiency through its key characteristic of favorable
propagation, where the channels of different users become
asymptotically orthogonal [4]. In addition, communication
channels are typically influenced by both large-scale and
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small-scale fading. Large-scale fading is mainly determined
by the distance and remains approximately constant over
multiple coherence times, whereas small-scale fading changes
rapidly with each coherence time. To counteract small-scale
fading and improve spectral efficiency, which requires adaptive
adjustment of the transmit power, massive MIMO stabilizes
the channel by deploying a large number of antennas and
implementing receive combining, e.g., maximum ratio (MR)
combining. The small-scale fading can be averaged out due
to the law of large numbers. This effect, known as channel
hardening, is another beneficial property [5].

Even though massive MIMO benefits from channel harden-
ing, resource allocation is still essential to meet user-specific
performance constraints. Reference [6] has studied power allo-
cation in cell-free massive MIMO, by maximizing the sensing
signal-to-interference-plus-noise ratio (SINR) while ensuring
that power consumption does not exceed the maximum power
constraints. The problem is then addressed through iterative
convex approximations. The key challenge with optimization-
based mechanisms is their high latency due to the need for
channel state information (CSI), where pilot-based channel
estimation is often applied, and that the computational over-
head increases notably when optimizing across a large number
of variables. Data-driven power allocation mechanisms are
proposed in [7] and [8] to address this challenge, where
deep neural networks are proposed for power allocation across
cellular and cell-free massive MIMO systems, respectively.
These mechanisms take large-scale fading information as input
and output power allocation decisions, speeding up real-time
power allocation significantly. The main challenges in training
such deep learning models are two-fold: 1) insufficiency of
data at a single data center, as in real world applications, data
collection is costly, and a single center may not be able to
gather enough data to train an optimal deep neural network
model effectively, 2) high costs associated with sharing data
across different data centers, primarily due to the significant
communication overhead.

To address these challenges, [9] introduces an FL frame-
work, where each edge processor (EP) gathers a local dataset
to train a model for power allocation for the access points
(APs) within the range of the EP. The local models trained
by each EP are then aggregated to develop a more capable
global model, by combining the local information gathered

MILCOM 2024 Track 5 - Machine Learning for Communications and Networking

979-8-3503-7423-0/24/$31.00 ©2024 IEEE

MILCOM 2024 Track 5 - Machine Learning for Communications and Networking

979-8-3503-7423-0/24/$31.00 ©2024 IEEE 1005

M
IL

C
O

M
 2

02
4 

- 2
02

4 
IE

EE
 M

ili
ta

ry
 C

om
m

un
ic

at
io

ns
 C

on
fe

re
nc

e 
(M

IL
C

O
M

) |
 9

79
-8

-3
50

3-
74

23
-0

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

M
IL

C
O

M
61

03
9.

20
24

.1
07

73
82

5

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 12,2024 at 23:57:54 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. Clustered FL framework for downlink transmit power allocation

by each local model. The aggregation process is coordinated
iteratively by a central processor, where at the start of each
round, the central processor distributes the current state of the
global model to all EPs. The EPs train the received model
using their own locally collected datasets. Selected EPs then
send their trained models back to the central processor, which
combines the local models to update the global model. In
doing so, the FL significantly accelerates model convergence
and performance compared to local training, while alleviating
the need to collect all data at a central processor. On the
other hand, [9] does not address the severe heterogeneity
in the environment conditions that may be observed across
different EPs in practice. When different sets of users are
subject to different network conditions, which may lead to
severe heterogeneities across the datasets collected by local
EPs, training a single global model to serve all users can
significantly deteriorate the network performance [10].

To overcome these challenges, in this work we propose a
clustered FL framework for massive MIMO power allocation.
Instead of training a single global model to serve all users, we
train different global models for groups of users with different
data distributions [10]. Due to the lack of prior knowledge
about the clusters and the data distributions of the users,
clustering is carried out simultaneously during model training.
To do so, the central processor sends to each EP a set of
C global models. The EP then selects the model that best
represents its local dataset, and then trains a local model by
using the selected global model. The central processor then
updates each global model by aggregating the local models
from the corresponding group of users. To accelerate the
convergence rate and enhance the robustness of the proposed
clustered FL framework, we apply a CMAB approach [11] for
EP selection, without requiring prior knowledge of the dataset
distribution among EPs.

II. SYSTEM MODEL

We consider a multi-cell massive MIMO network illustrated
in Fig. 1, with N EPs spread over a broad geographic region.

Each EP manages a distinct area divided into L cells. At
the center of each cell is an AP with M antennas. With
a slight abuse of notation, we use j ∈ [L] to refer to
both the index of each cell and its corresponding AP. AP j
serves Kj single-antenna UEs, where k ∈ [Kj ]. Each AP j
exclusively communicates with the UEs within its own cell,
while being subject to interference from neighboring APs.
Each EP is linked to its designated APs to manage power
allocation strategies. We assume that the EPs are positioned
sufficiently far from one another, and the interference across
the APs served by different EPs are negligible. Our system
model follows the setup considered in [9], but we drop the
assumption of network homogeneity and allow the number of
EPs with different UE topologies be heterogeneous. The EPs
are coordinated by a central processor, which is tasked with
coordinating the training of the FL model, which includes EP
selection, model offloading, and aggregation in the clustered
FL framework as will be described later.

A. Massive MIMO Downlink Communication

We define the channel gain between AP j ∈ [L] and UE
k in cell l ∈ [L] as hj

l,k, which follows a complex Gaussian
distribution CN (0M ,Rj

l,k), where Rj
l,k represents the spatial

correlation matrix. The channel gains across different users are
mutually independent, including users within the same cell.
The average channel gain per antenna between AP j and UE
k in cell l is given by 1

MTr(Rj
l,k) = βj

l,k, which corresponds
to the large-scale fading coefficient modeled as in [12],

βj
l,k = Υ− 10α log10(d

j
l,k) + F j

l,k, (1)

where Υ is the median channel gain at a reference distance of
1 km, djl,k denotes the distance between AP j and UE k in cell
l, α is the path-loss exponent, and F j

l,k denotes the shadow
fading which is normally distributed with a variance of σ2

sf . In
downlink communication, AP j transmits the downlink signal,

xj =

Kj∑
k=1

ψj,ksj,k, (2)

where ψj,k is the precoding vector, and sj,k ∼ CN (0, ρj,k) is
the downlink data signal intended for UE k in cell j, such that
ρj,k denotes the average transmit power. The precoding vector
is normalized such that E{∥ψH

j,kψj,k∥2} = 1, to ensure that
the expected power of the signal transmitted to UE k is equal
to ρj,k, i.e., E{∥ψH

j,ksj,k∥2} = ρj,k. We consider imperfect
CSI between the AP and UEs, where the channel between AP
j and UE k in cell l is modeled as,

ĥj
l,k = hj

l,k + nj
l,k (3)

where each element of the noise vector nj
l,k is assumed

to follow a complex Gaussian distribution CN (0, σ2). We
consider maximum ratio combining for the precoder ψj,k,

ψj,k =
ĥj
j,k

∥ĥj
j,k∥

(4)
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The downlink ergodic spectral efficiency of UE k in cell j can
then be lower bounded by [12],

SEj,k =
τd
τc

log2

(
1 +

ρj,kaj,k∑L
l=1

∑Kl

i=1 ρl,ibl,i,j,k + σ2
DL

)
(5)

where
aj,k = |E{ψH

j,kh
j
j,k}|

2 (6)

and

bl,i,j,k=

{
E{|ψH

l,ih
l
j,k|2}, (l, i) ̸=(j, k)

E{|ψH
j,kh

j
j,k|2} − |E{ψH

j,kh
j
j,k}|2, (l, i)=(j, k)

(7)
where σ2

DL denotes the downlink noise power, τc denotes
the total number of samples in one coherence-block, and τd
represents the number of samples used for downlink commu-
nication. Expectations are defined with respect to the channel
and noise distributions. Due to the lack of a closed form
solution, in our experiments, we consider the empirical average
evaluated over multiple channel realizations.

B. Problem Formulation
We consider the downlink transmit power allocation prob-

lem aimed at achieving max-min fairness in downlink spectral
efficiency among the APs and UEs served by a given EP. The
optimization problem can be formulated as follows,

max
{ρj,k,∀j,k}

min
j,k

SEj,k

subject to
Kj∑
k=1

ρj,k ≤ ρmax,∀j ∈ [L]
(8)

where ρmax denotes the maximum transmit power of any given
AP. We assume that all APs share the same hardware setup.

It has been observed in [9] that solving (8) through con-
ventional methods, such as the bisection approach [12], can
result in high latency primarily, failing to meet the real-
time requirements of large-scale systems [2], [3]. One could
develop a separate DNN to learn the power allocation policy,
so as to speed up the allocation problem at operation time.
Training across regions (EPs) could help if other regions have
similar features. Recently, [9] has proposed FL to speed-up
real-time power allocation, but considers a homogeneous user
distribution across the geographical regions served by different
EPs, which can degrade performance in real-world settings
when network topologies are highly heterogeneous, such as
rural versus urban environments. In this work, our goal is
to address this challenge, by training personalized models
to serve users under different network conditions, to support
power allocation in highly heterogeneous environments. To do
so, we leverage clustered FL, and gradually cluster the groups
of EPs with similar characteristics, and adapt the trained
models to learn from the data collected from each cluster.
In doing so, we enable coordination between EPs with similar
network characteristics, while avoiding the potential perfor-
mance degradation in training performance due to network
heterogeneity. As will be detailed later, however, we further
consider the impact of imperfect CSI in dataset distribution.

C. Dataset Construction

The large-scale fading coefficient β has been proven effec-
tive for neural networks to learn optimal power allocations
for massive MIMO networks with max-min fairness [2], [3].
The model obviates the need to estimate parameters aj,k
and bl,i,j,k from (6) and (7), respectively, allowing it to
directly output the transmit power strategies using only the
large-scale fading coefficients. Accordingly, for our power
allocation task, we consider a training set constructed similar
to [2], where the features correspond to the large-scale fading
coefficients β = (β1

1,1, . . . , β
L
L,KL

), which is a function of
the geographical coordinates, and the labels correspond to the
estimated spectral efficiency of the UEs associated with the
same EP, namely the ρ⋆ = (ρ⋆1,1, . . . , ρ

⋆
L,KL

). The labels are
then constructed by solving (8) using the CVX toolbox in
MATLAB [13]. As will be detailed in our experiments, we
study the performance under both noise-free and noisy labels.
For the former, it is assumed that APs can obtain perfect
CSI, i.e., σ2 = 0. For the latter, we consider varying channel
estimation qualities at the APs, by varying σ2 > 0. The L APs
served by a given EP n ∈ [N ] then sends the (imperfect) CSI
from (3) to the EP, after which the EP solves (8) using the
CVX toolbox to locally generate the labels. We assume that
the EP lacks knowledge of the noise power σ2, and whether
the generated data point is noise-free or noisy.

III. POWER ALLOCATION WITH CLUSTERED FEDERATED
LEARNING

In this section, we first introduce our clustered FL frame-
work for power allocation, which supports group-level person-
alized distributed learning without necessitating dataset trans-
mission. Following this, we present the CMAB mechanism to
accelerate the convergence of clustered FL while enhancing
robustness against noisy data resulting from imperfect CSI.

A. Clustered FL Framework for Power Allocation

We assume that N EPs support C different UE topologies,
such as rural vs urban environments. Our objective is to train
C machine learning models, where each model is tailored for
power allocation across the cluster of users with a distinct
topology. We further assume that the central processor does
not have any prior information regarding the specific cluster to
which each EP belongs. Unlike traditional FL, which focuses
on training a single global model through distributed training
and model aggregation, clustered FL addresses the high het-
erogeneity of local datasets by training different personalized
models for users with different data distributions, as suggested
by [10]. In doing so, the aim is to train a personalized global
model for each cluster, with the assumption that the maximum
number of clusters C is known.

The cluster models {W(0)
c }Cc=1 are initialized randomly at

the central processor. At the beginning of each global training
round t, the central processor broadcasts the cluster models
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{W(t)
c }Cc=1 to the EPs. Each EP n ∈ [N ] chooses the model

that minimizes the loss with respect to its local training set,

cn,t = arg min
c∈[C]

F (Tn;W(t)
c ) (9)

where cn,t denotes the cluster selected by EP n at round t, Tn
is the local training set of EP n, and F (Tn;W(t)

c ) is the local
training loss of EP n. In doing so, each EP selects the cluster
model that is better suited to its local data distribution. For the
power allocation task, we let F (·) be the mean squared error
loss. The central processor then selects a subset St ⊆ [N ] of
EPs for training, which will be detailed in the next section.
Each chosen EP n ∈ St trains their selected cluster model
using their local dataset, through E local training rounds using
gradient descent,

W(t)
cn,t

(m+ 1)←W(t)
cn,t

(m)− η∇F (Tn;W(t)
cn,t

(m)) (10)

where 0 ≤ m ≤ E−1, such that W(t)
cn,t(0) ≜ W

(t)
cn,t , and η is

the learning rate. After local training, the selected EPs upload
their local models to the central processor. Unlike traditional
FL, where the central processor aggregates the received local
models into a single global model, the central processor in
clustered FL aggregates the received models according to their
respective clusters. This aggregation strategy ensures that each
cluster’s model is fine-tuned to the specific characteristics of
the data within that cluster. The model aggregation process in
clustered FL can be described as follows,

W(t+1)
c =

∑
n∈Sc,t

|Tn|
|TSc,t

|
W(t)

cn,t
(E), ∀c ∈ [C] (11)

where Sc,t = {n ∈ St : cn,t = c} is the set of participating
EPs that select cluster c in round t, |Tn| is the size of the local
training set of EP n, and |TSc,t

| ≜
∑

n′∈Sc,t
|Tn′ | denotes

the total size of the local training sets from all participating
EPs that select cluster c at round t. Training continues until
all cluster models converge. Once training is completed, the
central processor distributes the cluster models to the EPs.
Each EP then utilizes the cluster model selected using (9) to
determine the power allocation policies for the UEs.

B. EP Selection for Training

In real-world resource-limited settings, having all EPs to
participate at each round of training is inefficient. To address
this, we employ a CMAB mechanism with Thomspon sam-
pling, to sample a subset of S ≤ N EPs to participate in each
training round [9], [11]. To do so, we seek to maximize the
global reward defined as,

r(t) = min
n∈[N ],j∈[L],k∈[Kj ]

SE
(t)
j,k(Vn,W

(t)
cn,t

) (12)

where Vn denotes the validation dataset of EP n, where the
data samples are distinct from the training set, however, have
the same distribution, and SE

(t)
j,k(Vn) denotes the minimum

spectral efficiency of UE k ∈ [Kj ] served by AP j within the
coverage area of EP n at round t, evaluated using the power
allocation strategy determined by the cluster model W

(t)
cn,t

selected by EP n across the validation set Vn. The context
vector for EP n at global round t is then defined as,

x(t)
n = [F̄ (Tn;W(tn)

cn,tn
), F̄ (Vn;W(t)

cn,t
), δ(t)n ]⊤, (13)

where,

F̄ (Tn;W(tn)
cn,tn

) =
F (Tn;W(tn)

cn,tn
)

F (Tn;W(1)
cn,1)

(14)

is the local training loss of EP n normalized by the training
loss from the first round, where tn denotes the most recent
round in which EP n is selected by the central processor,

F̄ (Vn;W(t)
cn,t

) =
F (Vn;W(t)

cn,t)

F (Vn;W(1)
cn,1)

(15)

is the local validation loss of EP n normalized by the validation
loss observed in the first round, and δ

(t)
n is the one-hot encoded

cluster indicator. For example, if EP n selects the first cluster
out of C clusters, this is encoded as δ

(t)
n = (0, . . . , 0, 1).

Let Xall and rall denote the concatenated history of the
context vectors for selected EPs and the corresponding global
rewards up to round t−1, respectively. At the first global round
t = 1, the central processor selects all EPs, i.e., S1 = [N ].
Then, at each global round t ≥ 2, S EPs are selected with the
highest scores, where the score of EP n is given by,

Score(t)n = ω⊤
newx

(t)
n . (16)

where ωnew is sampled from the Gaussian distribution
N (V−1Xallrall, ϵ2V−1), such that V = Xall⊤Xall + λI, and
I denotes the identity matrix, λ > 0 is a regularization
parameter, and ϵ > 0 indicates the exploration parameter. We
note that the Sherman-Morrison formula can be used to update
the V−1 efficiently, and that the matrix Xall and rall do not
need to be explicitly stored.

IV. NUMERICAL EVALUATIONS

We consider a massive MIMO network that consists of 15
EPs, each supporting four adjacent cells. Each cell is structured
as a 500m × 500m area with an AP centrally located with
fixed position. Each AP is equipped with M = 100 antennas.
A warp around topology is utilized as in [13]. Communication
is done over a 20 MHz bandwidth, with a noise power of -94
dBm at the receiver. We assume 15 EPs are distributed across
a vast area, and the distance between each EP is sufficiently
large so that interference between different EPs is negligible.

We consider 8 UEs distributed across the 4 cells served
by any given EP. We then generate three distinct clusters as
illustrated in Fig. 2, with different number of UEs per cell.
Specifically, in cluster 1, UEs are uniformly distributed across
the four cells. In cluster 2, UEs are concentrated primarily in
one cell, with the other cells having fewer and more scattered
UEs. In cluster 3, most UEs located in two cells, while
the remaining cells are almost empty. Each EP is associated
exclusively with one cluster without prior knowledge of the
cluster assignments of other EPs.

The distribution of EPs across clusters is unbalanced: out of
a total of 15 EPs, two belong to Cluster 1, three to Cluster 2,
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Fig. 2. Heterogeneous UE distribution topologies.

and ten to Cluster 3. As discussed in Section II-C, to simulate
the impact of imperfect CSI, we use complex Gaussian noise
as shown in (3) before solving (8). The proportion of noisy
data points in the local datasets is heterogeneous across the
EPs, with the noise power being consistent across all EPs.
Specifically, Cluster 1 has a noise-free dataset for the first
EP while the second EP has 10% of its data points affected
by noise. In Cluster 2, the first two EPs experience the same
noise distribution as those in Cluster 1, whereas the third EP
has 20% of the data points noisy. In Cluster 3, the noisy data
ratio is gradually increased from 0% to 40% across the EPs.

Each EP has a local dataset consisting of 1100 samples,
divided into training, validation, and testing sets according to
a 9 : 1 : 1 ratio uniformly at random. During training, the
learning rate is initially set as η = 10−3 and is reduced by
0.2% after each round, along with the Adam optimizer [14]
to facilitate efficient model training. Each data sample is pre-
processed by expressing the features β as a 3D matrix of size
Kmax×L×L through zero padding, where Kmax denotes the
maximum number of UEs that an AP serves across all EPs. We
then employ a 3D-ResNet [15] to learn the mapping between
β and the optimal transmit power ρ⋆. The architecture of the
proposed 3D-ResNet is based on the traditional ResNet18 [16],
but modified to include all layers in 3D. The model inputs are
the large-scale fading coefficients between all the APs and UEs
covered by the same EP. Following the input layer, there is one
convolutional layer equipped with 64 filters of size 7× 7× 7,
stride of 2, and padding of 3, followed by batch normalization
and ReLU activation. This is succeeded by a max pooling layer
with dimensions 3× 3× 3, stride of 2, and padding of 1. The
core of the model consists of four consecutive residual blocks;
each block contains two convolutional layers, with batch nor-
malization and ReLU activation. The number of filters in each
convolutional layer doubles with every block, starting from
64. Each residual block includes a skip-connection, featuring
a convolutional layer with batch normalization to align the
dimensions of the shortcut output with the main path. The
filter size for each convolutional layer is 3× 3× 3, except for
the first convolutional layer. Finally, the architecture utilizes
an average pooling layer and a fully connected layer to map
the features to the output layer, which specifies the power
allocation for the UEs served by the same EP.

To evaluate the performance of our clustered FL framework
with context-based EP selection, we consider the baselines,

• Clustered FL + CMAB (our work): 3 EPs are sampled
based on the bandit score computed as described in (16),

Fig. 3. Expected minimum spectral efficiency for each cluster under perfect
CSI.

then each selected EP selects one cluster as described
in (9) and performs local training with E = 1 local
training round. After local training, the central processor
aggregates the uploaded models as in (11) to update the
global model.

• Centralized training [2]: The local datasets from all EPs
are gathered at the central processor, who then trains a
single model. This baseline represents the conventional
centralized training mechanism.

• Clustered FL+uniform sampling [10]: In this baseline,
3 EPs are uniformly sampled at each global round (as
opposed to CMAB-based EP sampling), and then each
selected EP selects one cluster according to (9). After
local training, the central processor aggregates the up-
loaded models according to (11). This baseline studies
the impact of uniform sampling for EP selection on the
model accuracy.

• Global aggregation [17]: This baseline represents the
classical FL framework, where a single global model
is initialized at the central processor, and all N EPs
participate in local training and model updating. This
baseline is also the performance upper bound to the FL
baseline for massive MIMO power-allocation from [9].

• Decentralized training [2]: In this setting, EPs train their
own local models using their local datasets only, without
any collaboration across different EPs.

In Fig. 3, we compare the expected minimum spectral
efficiency across each cluster for all baselines, by assuming
each EP is equipped with noise-free local datasets with perfect
channel estimation. We observe that our framework achieves
the best performance across all clusters. Clustered FL with
uniform sampling outperforms both decentralized training and
global aggregation baselines, yet is outperformed by CMAB-
based EP sampling. Clustered FL with CMAB-based EP
sampling, on the other hand, where the central processor
selects the EPs based on the bandit scores, improves the
performance against uniform sampling by 4%, decentralized
training by 10%, and centralized training by 13%. As such,
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Fig. 4. Expected minimum spectral efficiency for each cluster under mixed
dataset with imperfect CSI (σ2 = 5× 10−4)

Fig. 5. Expected minimum spectral efficiency for each cluster under mixed
dataset with imperfect CSI (σ2 = 1× 10−2)

personalized models significantly enhance performance com-
pared to conventional baselines.

In Figs. 4 and 5, we consider imperfect CSI using complex
Gaussian noise as described in (3), to simulate varying channel
estimation qualities, with noise powers σ2 = 5 × 10−4 and
σ2 = 1 × 10−2, respectively. In both scenarios, we observe
that conventional FL with global aggregation fails to converge,
while clustered FL outperforms both centralized and decentral-
ized training baselines. Additionally, we observe that training
a single global model fails to achieve consistent performance
across all clusters. In decentralized training, the model per-
formance is constrained by the disparate proportions of noisy
data across the EPs, which can be attributed to the absence of
cooperation enabled by FL. For Cluster 3, the performance
of clustered FL with uniform sampling and the proposed
clustered FL with CMAB-based sampling are comparable. On
the other hand, for Clusters 1 and 2, clustered FL with CMAB-
based EP sampling algorithm achieves superior performance.
Hence, the models associated with clustered FL with CMAB-
based EP selection demonstrate faster convergence and higher
expected minimum spectral efficiency across all clusters.

V. CONCLUSION

In this paper, a clustered FL framework is proposed for mas-
sive MIMO power allocation under heterogeneous environ-
ments, by utilizing large-scale fading coefficients between APs
and UEs. The proposed framework can enhance the training
performance in heterogeneous settings, without exchanging
local datasets, and significantly speed-up power allocation in
real-time delay-sensitive massive MIMO applications. Our ex-
periments show that under highly heterogeneous settings, the
proposed clustered FL mechanism achieves highest expected
minimum spectral efficiency compared to the conventional
baselines. The robustness of the proposed framework has fur-
ther been verified by considering the impact of noisy channel
state estimation during dataset construction and training.
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